On Algebraically Integrable Differential Operators on an Elliptic Curve

نویسنده

  • Pavel ETINGOF
چکیده

We study differential operators on an elliptic curve of order higher than 2 which are algebraically integrable (i.e., finite gap). We discuss classification of such operators of order 3 with one pole, discovering exotic operators on special elliptic curves defined over Q which do not deform to generic elliptic curves. We also study algebraically integrable operators of higher order with several poles and with symmetries, and (conjecturally) relate them to crystallographic elliptic Calogero–Moser systems (which is a generalization of the results of Airault, McKean, and Moser).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic distribution of eigenvalues of the elliptic operator system

Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.

متن کامل

The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions

Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...

متن کامل

Abelian solitons

We describe a new algebraically completely integrable system, whose integral manifolds are co-elliptic subvarieties of Jacobian varieties. This is a multi-periodic extension of the Krichever-Treibich-Verdier system, which consists of elliptic solitons. The goal of this work is to generalize the theory of elliptic solitons, which was developed by A. Treibich and J.-L. Verdier based on earlier wo...

متن کامل

Heckman-opdam Hypergeometric Functions and Their Specializations

is completely integrable and hence L(k) is in a commuting system of differential operators with n algebraically independent operators. Then we have the following fundamental result (cf. [1]). Theorem [Heckman, Opdam]. When kα are generic, the function F (λ, k;x) has an analytic extension on R and defines a unique simultaneous eigenfunction of the commuting system of differential operators with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011