Pose estimation from multiple cameras based on Sylvester's equation

نویسندگان

  • Chong Chen
  • Dan Schonfeld
چکیده

In this paper, we introduce a method to estimate the object’s pose from multiple cameras. We focus on direct estimation of the 3D object pose from 2D image sequences. Scale-Invariant Feature Transform (SIFT) is used to extract corresponding feature points from adjacent images in the video sequence. We first demonstrate that centralized pose estimation from the collection of corresponding feature points in the 2D images from all cameras can be obtained as a solution to a generalized Sylvester’s equation. We subsequently derive a distributed solution to pose estimation from multiple cameras and show that it is equivalent to the solution of the centralized pose estimation based on Sylvester’s equation. Specifically, we rely on collaboration among the multiple cameras to provide an iterative refinement of the independent solution to pose estimation obtained for each camera based on Sylvester’s equation. The proposed approach to pose estimation from multiple cameras relies on all of the information available from all cameras to obtain an estimate at each camera even when the image features are not visible to some of the cameras. The resulting pose estimation technique is therefore robust to occlusion and sensor errors from specific camera views. Moreover, the proposed approach does not require matching feature points among images from Preprint submitted to Computer Vision and Image Understanding July 29, 2009 different camera views nor does it demand reconstruction of 3D points. Furthermore, the computational complexity of the proposed solution grows linearly with the number of cameras. Finally, computer simulation experiments demonstrate the accuracy and speed of our approach to pose estimation from multiple cameras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust pose estimation based on Sylvester's equation: Single and multiple collaborative cameras

A method is introduced to track the object’s motion and estimate its pose from multiple cameras. Firstly pose estimation from one camera is explained. We show that pose estimation from the corresponding feature points can be formed as a solution to Sylvester’s equation. Furthermore, we develop a distributed solution, which indicates that pose estimation from multiple cameras can be obtained fro...

متن کامل

Extended Kalman Filter Based Pose Estimation Using Multiple Cameras

In this work, we solve the pose estimation problem for robot motion by placing multiple cameras on the robot. In particular, we combine the Extended Kalman Filter (EKF) with the multiple cameras. An essential strength of our approach is that it does not require finding image feature correspondences among cameras which is a difficult classical problem. The initial pose, the tracked features, and...

متن کامل

Probabilistic Head Pose Tracking Evaluation in Single and Multiple Camera Setups

This paper presents our participation in the CLEAR 07 evaluation workshop head pose estimation tasks where two head pose estimation tasks were to be addressed. The first task estimates head poses with respect to (w.r.t.) a single camera capturing people seated in a meeting room scenario. The second task consisted of estimating the head pose of people moving in a room from four cameras w.r.t. a ...

متن کامل

Distributed Pose Estimation from Multiple Views

A method is introduced to track the object’s motion and estimate its pose from multiple cameras. We focus on direct estimation of the 3D pose from 2D image sequences. We derive a distributed solution that is equivalent to the centralized pose estimation from multiple cameras. Moreover, we show that, by using a proper rotation between each camera and a fixed camera view, we can rely on independe...

متن کامل

Photoconsistent Relative Pose Estimation between a PMD 2D3D-Camera and Multiple Intensity Cameras

Active range cameras based on the Photonic Mixer Device (PMD) allow to capture low-resolution depth images of dynamic scenes at high frame rates. To use such devices together with high resolution optical cameras (e.g. in media production) the relative pose of the cameras with respect to each other has to be determined. This task becomes even more challenging, if the camera is to be moved and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Vision and Image Understanding

دوره 114  شماره 

صفحات  -

تاریخ انتشار 2010