A Unified Framework for Bases, Frames, Subspace Bases, and Subspace Frames

نویسنده

  • Gunnar Farnebäck
چکیده

Frame representations (e.g. wavelets) and subspace projections are important tools in many image processing applications. A unified framework for frames and subspace bases, as well as bases and subspace frames, is developed for finite dimensional vector spaces. Dual (subspace) bases and frames are constructed and the theory is generalized to weighted norms and seminorms. It is demonstrated how the framework applies to the cubic facet model, to normalized convolution, and to projection onto second degree polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G-Frames, g-orthonormal bases and g-Riesz bases

G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.

متن کامل

Rational Time-frequency Vector-Valued Subspace Gabor Frames and Balian-Low Theorem

This talk addresses vector-valued subspace Gabor frames with rational time-frequency product. By introduction of a suitable Zak transform matrix, we characterize vector-valued subspace Gabor frames, Riesz bases and orthonorrmal bases, and the uniqueness of Gabor duals of type I and type II. Using the uniqueness results, we extend the classical Balian-Low theorem to vector-valued subspace Gabor ...

متن کامل

A characterization of L-dual frames and L-dual Riesz bases

This paper is an investigation of $L$-dual frames with respect to a function-valued inner product, the so called $L$-bracket product on $L^{2}(G)$, where G is a locally compact abelian group with a uniform lattice $L$. We show that several well known theorems for dual frames and dual Riesz bases in a Hilbert space remain valid for $L$-dual frames and $L$-dual Riesz bases in $L^{2}(G)$.

متن کامل

Banach Pair Frames

In this article, we consider pair frames in Banach spaces and   introduce Banach pair frames. Some various concepts in the frame theory such as frames, Schauder frames, Banach frames and atomic decompositions are considered as   special kinds of (Banach) pair frames.  Some frame-like inequalities  for (Banach)  pair frames are presented. The elements that participant  in the construction of (Ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999