Removal of 1,4-dioxane from industrial wastewaters: routes of decomposition under different operational conditions to determine the ozone oxidation capacity.
نویسندگان
چکیده
This paper denotes the importance of operational parameters for the feasibility of ozone (O3) oxidation for the treatment of wastewaters containing 1,4-dioxane. Results show that O3 process, which has formerly been considered insufficient as a sole treatment for such wastewaters, could be a viable treatment for the degradation of 1,4-dioxane at the adequate operation conditions. The treatment of both synthetic solution of 1,4-dioxane and industrial wastewaters, containing 1,4-dioxane and 2-methyl-1,3-dioxolane (MDO), showed that about 90% of chemical oxygen demand can be removed and almost a total removal of 1,4-dioxane and MDO is reached by O3 at optimal process conditions. Data from on-line Fourier transform infrared spectroscopy provides a good insight to its different decomposition routes that eventually determine the viability of degrading this toxic and hazardous compound from industrial waters. The degradation at pH>9 occurs faster through the formation of ethylene glycol as a primary intermediate; whereas the decomposition in acidic conditions (pH<5.7) consists in the formation and slower degradation of ethylene glycol diformate.
منابع مشابه
Electrooxidation of industrial wastewater containing 1,4-dioxane in the presence of different salts.
The treatment of 1,4-dioxane solution by electrochemical oxidation on boron-doped diamond was studied using a central composite design and the response surface methodology to investigate the use of SO4 (2-) and HCO3 (-) as supporting electrolytes considering the applied electric current, initial chemical oxygen demand (COD) value, and treatment time. Two industrial effluents containing bicarbon...
متن کاملPhoto catalytic removal of Toluene vapor from air in the Adsorption-Photo catalytic bed
Background and aims: Clean air is one of the most important components of health and sustainable development. Every person breathes about 10 kg of air per day and if it contains pollutants, it will have a serious impact on their health. Indoor air quality (IAQ) is one of the major health issues that have been addressed in recent years with changes in lifestyle patterns. Usually, due to the incr...
متن کاملبررسی کارایی فرایند تصفیه الکتروشیمیایی در حذف سیانید از فاضلاب صنعتی
Background and Objectives: Cyanide is a highly toxic compound which is Normally found in numerous industries, such as electroplating wastewater. Release of this compounds in to the Enviroment has a lot health hazards.The Purpose of this study is to Determine the efficiency of electrochemical oxidation method for Cyanide removal from industrial wastewaters Materials and Methods: This study con...
متن کاملEnhanced Oxidation of Azo Dye Using Ag-SiO2 Nanoparticle and Peroxydisulfate and Kinetic Study
Present work investigates the capability of oxidative treatment process in the presence of nano silver doped on silicate particles for decolorization of a widely used azo dye, C.I. Direct Blue 129 (DB129) in water samples. Solutions with initial concentration of 20 mgL-1 of dye, within the range of generic concentration in textile wastewaters, were treated under ambient conditions of initial pH...
متن کاملبررسی اثر زمان ماند، دوز ازن و رطوبت نسبی بر کارایی فرایند ازنزنی کاتالیزوری در حذف زایلن از جریان هوای آلوده
Background and aimsThe catalytic ozonation is an efficient process for the degradation of volatile organic compounds from contaminated air stream. This study was aimed at investigating the efficacy of catalytic ozonation process in removal of xylene from the polluted air stream andthe influence of retention time (gas flow rate), inlet ozone dose and relative humidity on this performanceMethodst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of hazardous materials
دوره 280 شماره
صفحات -
تاریخ انتشار 2014