LD-graphs and global location-domination

نویسنده

  • I. M. Pelayo
چکیده

A dominating set S of a graph G is a locating-dominating-set, LD-set for short, if every vertex v not in S is uniquely determined by the set of neighbors of v belonging to S. Locating-dominating sets of minimum cardinality are called LDcodes and the cardinality of an LD-code is the location-domination number, λ(G). An LD-set S of a graph G is global if it is an LD-set for both G and its complement, G. One of the main contributions of this work is the definition of the LD-graph, an edge-labeled graph associated to an LD-set, that will be very helpful to deduce some properties of location-domination in graphs. Concretely, we use LD-graphs to study the relation between the location-domination number in a bipartite graph and its complement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On global location-domination in graphs∗

A dominating set S of a graph G is called locating-dominating, LD-set for short, if every vertex v not in S is uniquely determined by the set of neighbors of v belonging to S. Locating-dominating sets of minimum cardinality are called LD-codes and the cardinality of an LD-code is the location-domination number λ(G). An LD-set S of a graph G is global if it is an LD-set of both G and its complem...

متن کامل

On global location-domination in bipartite graphs

A dominating set S of a graph G is called locating-dominating, LD-set for short, if every vertex v not in S is uniquely determined by the set of neighbors of v belonging to S. Locatingdominating sets of minimum cardinality are called LD-codes and the cardinality of an LD-code is the location-domination number λ(G). An LD-set S of a graph G is global if it is an LD-set of both G and its compleme...

متن کامل

LD-graphs and global location-domination in bipartite graphs

A dominating set S of a graph G is a locating-dominating-set, LD-set for short, if every vertex v not in S is uniquely determined by the set of neighbors of v belonging to S. Locating-dominating sets of minimum cardinality are called LDcodes and the cardinality of an LD-code is the location-domination number, λ(G). An LD-set S of a graph G is global if it is an LD-set for both G and its complem...

متن کامل

Coverings, matchings and paired domination in fuzzy graphs using strong arcs

The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...

متن کامل

On Roman, Global and Restrained Domination in Graphs

In this paper, we present new upper bounds for the global domination and Roman domination numbers and also prove that these results are asymptotically best possible. Moreover, we give upper bounds for the restrained domination and total restrained domination numbers for large classes of graphs, and show that, for almost all graphs, the restrained domination number is equal to the domination num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014