Quasi-isometric Extensions of Quasisymmetric Mappings of the Real Line Compatible with Composition

نویسنده

  • Zair Ibragimov
چکیده

We show that it is possible to extend, in a homomorphic fashion, each quasisymmetric homeomorphism of the real line to a quasi-isometry of the upper-half plane. Epstein and Markovic have recently shown that a homomorphic extension to quasiconformal homeomorphisms of the upper-half plane is not possible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extensions of Saeidi's Propositions for Finding a Unique Solution of a Variational Inequality for $(u,v)$-cocoercive Mappings in Banach Spaces

Let $C$ be a nonempty closed convex subset of a real Banach space $E$, let $B: C rightarrow E $ be a nonlinear map, and let  $u, v$ be  positive numbers. In this paper, we show  that  the generalized variational inequality $V I (C, B)$ is singleton for $(u, v)$-cocoercive mappings under appropriate assumptions on Banach spaces. The main results are extensions of the Saeidi's Propositions for fi...

متن کامل

Composition of resolvents and quasi-nonexpansive multivalued mappings in Hadamared spaces

‎The proximal point algorithm‎, ‎which is a well-known tool for finding‎ ‎minima of convex functions‎, ‎is generalized from the classical‎ ‎Hilbert space framework into a nonlinear setting‎, ‎namely‎, ‎geodesic‎ ‎metric spaces of nonpositive curvature‎. ‎In this paper we propose an‎  ‎iterative algorithm for finding the common element of the‎ ‎minimizers of a finite family of convex functions a...

متن کامل

Quasisymmetric Schur functions and modules of the 0-Hecke algebra

We define a 0-Hecke action on composition tableaux, and then use it to derive 0-Hecke modules whose quasisymmetric characteristic is a quasisymmetric Schur function. We then relate the modules to the weak Bruhat order and use them to derive a new basis for quasisymmetric functions. We also classify those modules that are tableau-cyclic and likewise indecomposable. Finally, we develop a restrict...

متن کامل

Iterative methods for finding nearest common fixed points of a countable family of quasi-Lipschitzian mappings

We prove a strong convergence result for a sequence generated by Halpern's type iteration for approximating a common fixed point of a countable family of quasi-Lipschitzian mappings in a real Hilbert space. Consequently, we apply our results to the problem of finding a common fixed point of asymptotically nonexpansive mappings, an equilibrium problem, and a variational inequality problem for co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010