Tikhonov Regularization with a Solution Constraint
نویسندگان
چکیده
Many numerical methods for the solution of linear ill-posed problems apply Tikhonov regularization. This paper presents a modification of a numerical method proposed by Golub and von Matt for quadratically constrained least-squares problems and applies it to Tikhonov regularization of large-scale linear discrete ill-posed problems. The method is based on partial Lanczos bidiagonalization and Gauss quadrature. Computed examples illustrating its performance are presented.
منابع مشابه
A numerical approach for solving a nonlinear inverse diusion problem by Tikhonov regularization
In this paper, we propose an algorithm for numerical solving an inverse non-linear diusion problem. In additional, the least-squares method is adopted tond the solution. To regularize the resultant ill-conditioned linear system ofequations, we apply the Tikhonov regularization method to obtain the stablenumerical approximation to the solution. Some numerical experiments con-rm the utility of th...
متن کاملAutomatic estimation of regularization parameter by active constraint balancing method for 3D inversion of gravity data
Gravity data inversion is one of the important steps in the interpretation of practical gravity data. The inversion result can be obtained by minimization of the Tikhonov objective function. The determination of an optimal regularization parameter is highly important in the gravity data inversion. In this work, an attempt was made to use the active constrain balancing (ACB) method to select the...
متن کاملDiscrete Ill-posed Least-squares Problems with a Solution Norm Constraint
Straightforward solution of discrete ill-posed least-squares problems with errorcontaminated data does not, in general, give meaningful results, because propagated error destroys the computed solution. Error propagation can be reduced by imposing constraints on the computed solution. A commonly used constraint is the discrepancy principle, which bounds the norm of the computed solution when app...
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملA non-extensive maximum entropy based regularization method for bad conditioned inverse problems
A regularization method based on the non-extensive maximum entropy principle is devised. Special emphasis is given to the q = 1=2 case. We show that, when the residual principle is considered as constraint, the q = 1=2 generalized distribution of Tsallis yields a regularized solution for bad-conditioned problems. The so devised regularized distribution is endowed with a component which correspo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 26 شماره
صفحات -
تاریخ انتشار 2004