The mitogen-activated protein kinase Erk5 mediates human mesangial cell activation.
نویسندگان
چکیده
BACKGROUND Mesangial activation occurs in many forms of renal disease that progress to renal failure. Mitogen-activated protein kinases (MAPKs) are important mediators involved in the intracellular network of interacting proteins that transduce extracellular stimuli to intracellular responses. The extracellular signal-regulated kinases 5 (Erk5) MAPK pathway has been involved in regulating several cellular responses. Thus, we examined the expression of Erk5 in human renal tissue and the function of Erk5 in cultured human mesangial cells. METHODS Erk5 was visualized in human renal tissue by immunohistochemistry and in mesangial cells by immunofluorescence microscopy using the anti-Erk5 C-terminus antibody. Erk5 expression and activation, and collagen I expression were determined by western blot. To generate a dominant-negative form of the Erk5 in human mesangial cells, an EcoRI fragment from wild-type pCEFL-HA-Erk5 was subcloned into the EcoRI site of pCDNA3. Cell proliferation was analysed by an MTT-based assay. Cell contraction was analysed by studying the changes in the planar cell surface area. RESULTS Erk5 was expressed in the kidney, mainly localized at the glomerular mesangium. In cultured human mesangial cells, Erk5 was activated by foetal calf serum (FCS), high glucose, endothelin-1, platelet-activating factor (PAF), epidermal growth factor (EGF) and transforming growth factor beta-1 (TGF-beta1). The expression of a dominant-negative form of Erk5 in human mesangial cells resulted in a significant decrease in proliferation, EGF-induced cell contraction and TGF-beta1-induced collagen I expression. CONCLUSIONS These results suggest that Erk5 is involved in agonist-induced mesangial cell contraction, proliferation and ECM accumulation and point to a multifunctional role of Erk5 in the pathophysiology of glomerular mesangial cells.
منابع مشابه
Transcriptional regulation of tissue-specific genes by the ERK5 mitogen-activated protein kinase.
The ERK5 mitogen-activated protein kinase (MAPK) differs from other MAPKs in possessing a potent transcriptional activation domain. ERK5-/- embryos die from angiogenic defects, but the precise physiological role of ERK5 remains poorly understood. To elucidate molecular functions of ERK5 in the development of vasculature and other tissues, we performed gene profile analyses of erk5-/- mouse embr...
متن کاملERK5 activation enhances mesangial cell viability and collagen matrix accumulation in rat progressive glomerulonephritis.
The mitogen-activated protein kinase (MAPK) cascade plays an important role in the regulation of various cellular functions in glomerulonephritis (GN). Here, we investigated whether extracellular signal-regulated kinase 5 (ERK5), a member of the MAPK family, is involved in the pathogenesis of chronic mesangioproliferative GN, using a rat model induced by uninephrectomy and anti-Thy-1 antibody i...
متن کاملThe Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction
Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...
متن کاملExtracellular signal regulated kinase 5 (ERK5) is required for the differentiation of muscle cells.
Extracellular signal regulated kinase 5 (ERK5) is a novel member of the mitogen-activated protein kinase (MAPK) family with a poorly defined physiological function. Since ERK5 and its upstream activator MEK5 are abundant in skeletal muscle we examined a function of the cascade during muscle differentiation. We show that ERK5 is activated upon induction of differentiation in mouse myoblasts and ...
متن کاملThe signaling pathway leading to extracellular signal-regulated kinase 5 (ERK5) activation via G-proteins and ERK5-dependent neurotrophic effects.
Extracellular signal-regulated kinases (ERKs) or mitogen-activated protein kinases (MAPKs) are involved in cellular proliferation, differentiation, migration, and gene expression. The MAPK family includes ERK1/2, c-Jun NH(2)-terminal kinases 1, 2, and 3, p38MAPK alpha, beta, gamma, and -delta, and ERK5 as conventional MAPKs and ERK3, ERK4 NLK, and ERK7 as atypical MAPKs. Like other MAPKs, ERK5 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
دوره 23 11 شماره
صفحات -
تاریخ انتشار 2008