Entamoeba histolytica disturbs the tight junction complex in human enteric T84 cell layers.

نویسندگان

  • A Leroy
  • T Lauwaet
  • G De Bruyne
  • M Cornelissen
  • M Mareel
چکیده

Entamoeba (E.) histolytica trophozoites initiate amebiasis through invasion into the enteric mucosa. It was our aim to understand the molecular interactions between amebic trophozoites and enterocytes during the early steps of invasion. Trophozoites of E. histolytica strain HM1:IMSS were seeded on the apical side of enteric T84 cell layers, which were established on filters in two-compartment culture chambers. Cocultures were analyzed for paracellular permeability by measurement of transepithelial electrical resistance (TER) and for the tight junction proteins ZO-1, ZO-2, occludin, and cingulin by immunocytochemistry and immunoprecipitation. On direct contact with the apical side of the enteric cells, trophozoites caused an increase in paracellular permeability as evidenced by a decrease of TER associated with an increase in [(3)H]mannitol flux. Immunoprecipitation of cocultures revealed dephosphorylation of ZO-2, loss of ZO-1 from ZO-2, and degradation of ZO-1 but less so of ZO-2 and none of occludin or E-cadherin. In conclusion, trophozoite-associated increase in paracellular permeability of enteric cell layers is ascribed to disturbance of the molecular organization of tight junction proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entamoeba histolytica Contains an Occludin-Like Protein That Can Alter Colonic Epithelial Barrier Function

The exact mechanism by which Entamoeba histolytica disrupts the human colonic epithelium and invades the mucosa has yet to be clearly elucidated. E. histolytica produces a diverse array of putative virulent factors such as glycosidase, cysteine proteinases and amebapore that can modulate and/or disrupt epithelial barrier functions. However, it is currently thought that E. histolytica produces n...

متن کامل

The EhCPADH112 Complex of Entamoeba histolytica Interacts with Tight Junction Proteins Occludin and Claudin-1 to Produce Epithelial Damage

Entamoeba histolytica, the protozoan responsible for human amoebiasis, causes between 30,000 and 100,000 deaths per year worldwide. Amoebiasis is characterized by intestinal epithelial damage provoking severe diarrhea. However, the molecular mechanisms by which this protozoan causes epithelial damage are poorly understood. Here, we studied the initial molecular interactions between the E. histo...

متن کامل

Proteolysis of enteric cell villin by Entamoeba histolytica cysteine proteinases.

Invasive microorganisms efface enteric microvilli to establish intimate contact with the apical surface of enterocytes. To understand the molecular basis of this effacement in amebic colitis, we seeded Entamoeba histolytica trophozoites on top of differentiated human Caco-2 cell layers. Western blots of detergent lysates from such cocultures showed proteolysis of the actin-bundling protein vill...

متن کامل

Direct Molecular Detection and Phylogenetic Tree Analysis of Gastrointestinal Protozoan Parasites (Giardia lamblia, Entamoeba histolytica, Cryptosporidium parvum) from Diarrhea Infection in Kut City of Iraq: A Short Communication

Background: The intestinal tract of human can be infected by protozoan parasites. In this short communication, the stool samples were collected from patients with diarrhea referred to Kut hospital, Iraq, and then the parasites (Giardia lamblia, Entamoeba histolytica, Cryptosporidium parvum) were considered for molecular identification. Methods: Stool samples were collected from 69 patients wit...

متن کامل

Entamoeba histolytica EhCP112 Dislocates and Degrades Claudin-1 and Claudin-2 at Tight Junctions of the Intestinal Epithelium

During intestinal invasion, Entamoeba histolytica opens tight junctions (TJs) reflected by transepithelial electrical resistance (TEER) dropping. To explore the molecular mechanisms underlying this, we studied in vitro and in vivo the damage produced by the recombinant E. histolytica cysteine protease (rEhCP112) on TJ functions and proteins. rEhCP112 reduced TEER in Caco-2 cells in a dose- and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 14 9  شماره 

صفحات  -

تاریخ انتشار 2000