Selective modification of the pyruvate dehydrogenase kinase isoform profile in skeletal muscle in hyperthyroidism: implications for the regulatory impact of glucose on fatty acid oxidation.
نویسندگان
چکیده
The pyruvate dehydrogenase kinases (PDK1-4) regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Immunoblot analysis with antibodies raised against recombinant PDK isoforms demonstrated changes in PDK isoform expression in response to experimental hyperthyroidism (100 microg/100 g body weight; 3 days) that was selective for fast-twitch vs slow-twitch skeletal muscle in that PDK2 expression was increased in the fast-twitch skeletal muscle (the anterior tibialis) (by 1. 6-fold; P<0.05) but not in the slow-twitch muscle (the soleus). PDK4 protein expression was increased by experimental hyperthyroidism in both muscle types, there being a greater response in the anterior tibialis (4.2-fold increase; P<0.05) than in the soleus (3.2-fold increase; P<0.05). The hyperthyroidism-associated up-regulation of PDK4 expression was observed in conjunction with suppression of skeletal-muscle PDC activity, but not suppression of glucose uptake/phosphorylation, as measured in vivo in conscious unrestrained rats (using the 2-[(3)H]deoxyglucose technique). We propose that increased PDK isoform expression contributes to the pathology of hyperthyroidism and to PDC inactivation by facilitating the operation of the glucose --> lactate --> glucose (Cori) and glucose --> alanine --> glucose cycles. We also propose that enhanced relative expression of the pyruvate-insensitive PDK isoform (PDK4) in skeletal muscle in hyperthyroidism uncouples glycolytic flux from pyruvate oxidation, sparing pyruvate for non-oxidative entry into the tricarboxylic acid (TCA) cycle, and thereby supporting entry of acetyl-CoA (derived from fatty acid oxidation) into the TCA cycle.
منابع مشابه
The Effects of Pyruvate Dehydrogenase Kinase 4 (PDK4) Inhibition on Metabolic Flexibility during Endurance Training in Skeletal Muscles of Streptozotocin-induced Diabetic Rats
Background:Metabolic flexibility is the capacity of a system to adjust fuel (primarily glucose and fatty acids) oxidation based on nutrient availability. Pyruvate Dehydrogenase Kinase 4 (PDK4) is one of the main enzymes that play a critical role in metabolic flexibility. In current study, we examined PDK4 inhibition along with exercise training (ET) on the gene expression of Es...
متن کاملبررسی نقش پیروات دهیدروژناز کیناز 4 (PDK4) بر بیان سیترات سنتاز در عضله اسکلتی متعاقب چهار هفته تمرین استقامتی در موشهای نر نژاد ویستار
Background and Objective: Maintaining a balance between energy demand and supply is critical for health. In this process, pyruvate dehydrogenase kinase 4 (PDK4) enzyme plays an important role to maintain energy homeostasis. So, the aim of the present study was to investigate the role of PDK4 on the expression of citrate synthase in the skeletal muscle after 4 weeks of endurance training in male...
متن کاملGenetic activation of pyruvate dehydrogenase alters oxidative substrate selection to induce skeletal muscle insulin resistance.
The pyruvate dehydrogenase complex (PDH) has been hypothesized to link lipid exposure to skeletal muscle insulin resistance through a glucose-fatty acid cycle in which increased fatty acid oxidation increases acetyl-CoA concentrations, thereby inactivating PDH and decreasing glucose oxidation. However, whether fatty acids induce insulin resistance by decreasing PDH flux remains unknown. To gene...
متن کاملTargeted upregulation of pyruvate dehydrogenase kinase (PDK)-4 in slow-twitch skeletal muscle underlies the stable modification of the regulatory characteristics of PDK induced by high-fat feeding.
In using Western blot analysis with antibodies raised against recombinant pyruvate dehydrogenase kinase (PDK) isoforms PDK2 and PDK4, this study demonstrates selective PDK isoform switching in specific skeletal muscle types in response to high-fat feeding that is associated with altered regulation of PDK activity by pyruvate. The administration of a diet high in saturated fats led to stable (ap...
متن کاملInsulin Suppresses PDK4 Expression in Skeletal Muscle Independent of Plasma FFA
Starvation and experimental diabetes induce a stable increase in pyruvate dehydrogenase kinase (PDK) activity in skeletal muscle, which is largely due to a selective upregulation of PDK4 expression. Increased free fatty acid (FFA) level has been suggested to be responsible for the upregulation. Since these metabolic states are also characterized by insulin deficiency, the present study was desi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of endocrinology
دوره 167 2 شماره
صفحات -
تاریخ انتشار 2000