Microinjection of muscimol into the periaqueductal gray suppresses cardiovascular and neuroendocrine response to air jet stress in conscious rats.
نویسندگان
چکیده
Microinjection of the neuronal inhibitor muscimol into the dorsomedial hypothalamus (DMH) suppresses increases in heart rate (HR), mean arterial pressure (MAP), and circulating levels of adrenocorticotropic hormone (ACTH) evoked in air jet stress in conscious rats. Similar injection of muscimol into the caudal region of the lateral/dorsolateral periaqueductal gray (l/dlPAG) reduces autonomic responses evoked from the DMH, leading to the suggestion that neurons in the l/dlPAG may represent a descending relay for DMH-induced increases in HR and MAP. Here, we examined the role of neuronal activity in the caudal l/dlPAG on the increases in MAP, HR, and plasma ACTH seen in air jet stress in rats. Microinjection of muscimol into the caudal l/dlPAG reduced stress-induced increases in HR and MAP, while identical injections into sites just dorsal or into the rostral l/dlPAG had no effect. Microinjection of a combination of the glutamate receptor antagonists 2-amino-5-phosphonopentanoate (AP5) and 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) into the caudal l/dlPAG decreased stress-induced increases in HR alone only at the end of the 20-min stress period but significantly accelerated return to baseline. Surprisingly, microinjection of muscimol into the caudal l/dlPAG also reduced the stress-induced increase in plasma ACTH by 51%. Compared with unstressed control rats, rats exposed to air jet stress exhibited approximately 3 times the number of Fos-positive neurons in the l/dlPAG. These findings suggest that neurons in the l/dlPAG are activated in air jet stress and that this activity contributes to increases in HR, MAP, and plasma ACTH.
منابع مشابه
Contribution of infralimbic cortex in the cardiovascular response to acute stress.
The infralimbic region of the medial prefrontal cortex (IL) modulates autonomic and neuroendocrine function via projections to subcortical structures involved in the response to stress. We evaluated the contribution of the IL to the cardiovascular response evoked by acute stress. Under anesthesia (80 mg/kg ketamine-11.5 mg/kg xylazine), rats were implanted with telemetry probes or arterial line...
متن کاملMuscimol acts in dorsomedial but not paraventricular hypothalamic nucleus to suppress cardiovascular effects of stress.
Both the dorsomedial hypothalamic nucleus (DMH) and the paraventricular hypothalamic nucleus (PVN) have been implicated in the neural control of the cardiovascular response to stress. We used the GABAA agonist muscimol to inhibit neuronal activation and attempted to identify hypothalamic nuclei required for the cardiovascular response to air stress. Chronically instrumented rats received bilate...
متن کاملRole played by periaqueductal gray neurons in parasympathetically mediated fear bradycardia in conscious rats
Freezing, a characteristic pattern of defensive behavior elicited by fear, is associated with a decrease in the heart rate. Central mechanisms underlying fear bradycardia are poorly understood. The periaqueductal gray (PAG) in the midbrain is known to contribute to autonomic cardiovascular adjustments associated with various emotional behaviors observed during active or passive defense reaction...
متن کاملCardiovascular Effect of Dorsal Periaqueductal Gray During Lipopolysaccharide-induced Hypotension
Introduction: The central mechanism related to the cardiovascular response to lipopolysaccharide (LPS)-induced hypotension is not entirely known, but it is suggested that numerous brain areas such as dorsal periaqueductal gray (dPAG) are involved in this process. In the current work, the cardiovascular effect of the dPAG during LPS-induced hypotension is investigated. Methods: The study animal...
متن کاملAngiotensin II in dorsomedial hypothalamus modulates cardiovascular arousal caused by stress but not feeding in rabbits.
The dorsomedial hypothalamus (DMH) is critically implicated in the cardiovascular response to emotional stress. This study aimed to determine whether the DMH is also important in cardiovascular arousal associated with appetitive feeding behavior and, if so, whether locally released angiotensin II and glutamate are important in this arousal. Emotional (air-jet) stress and feeding elicited simila...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 295 3 شماره
صفحات -
تاریخ انتشار 2008