Substance P inhibits bicarbonate secretion from guinea pig pancreatic ducts by modulating an anion exchanger.

نویسندگان

  • Peter Hegyi
  • Michael A Gray
  • Barry E Argent
چکیده

The stimulatory pathways controlling HCO3- secretion by the pancreatic ductal epithelium are well described. However, only a few data are available concerning inhibitory mechanisms, which may play an important role in the physiological control of the pancreas. The aim of this study was to investigate the cellular mechanism by which substance P (SP) inhibits pancreatic ductal HCO3- secretion. Small intra/interlobular ducts were isolated from the pancreas of guinea pigs. During overnight culture the ducts seal to form a closed sac. Transmembrane HCO3- fluxes were calculated from changes in intracellular pH (measured using the pH-sensitive dye BCECF) and the buffering capacity of the cells. We found that secretin can stimulate HCO3- secretion in guinea pig pancreatic ducts about fivefold and that this effect could be totally blocked by SP. The inhibitory effect of SP was relieved by spantide, an SP receptor antagonist. SP had no effect on the activity of basolateral Na+-HCO3- cotransporters and Na+/H+ exchangers. However, the peptide did inhibit a Cl--dependent HCO3- efflux (secretory) mechanism, most probably the Cl-/HCO3 exchanger on the apical membrane of the duct cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein kinase C mediates the inhibitory effect of substance P on HCO3- secretion from guinea pig pancreatic ducts.

The inhibitory control of pancreatic ductal HCO(3)(-) secretion may be physiologically important in terms of limiting the hydrostatic pressure developed within the ducts and in terms of switching off pancreatic secretion after a meal. Substance P (SP) inhibits secretin-stimulated HCO(3)(-) secretion by modulating a Cl(-)-dependent HCO(3)(-) efflux step at the apical membrane of the duct cell (H...

متن کامل

Pancreatic ductal bicarbonate secretion: past, present and future.

The pancreatic duct epithelium in the guinea-pig and many other species secretes HCO(3)(-) at concentrations approaching 150 mM. This cannot be explained by conventional models based upon HCO(3)(-) secretion via an anion exchanger at the luminal membrane because: 1) under these conditions, the Cl(-) and HCO(3)(-) concentration gradients would favour HCO(3)(-) reabsorption rather than secretion,...

متن کامل

Molecular characterization of Slc26a3 and Slc26a6 anion transporters in guinea pig pancreatic duct.

HCO3 in pancreatic juice arises from the pancreatic duct cells. Secretin stimulates HCO3 secretion via a mechanism that involves activation of the adenylate cyclase pathway, activation of both basolateral K channels and the apical CFTR Cl channel, and stimulation of an apical Slc26mediated Cl/HCO3 exchanger (1). The Slc26 anion exchangers, Slc26a3 and Slc26a6, have both been localized to the ap...

متن کامل

SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization.

The secretin-stimulated human pancreatic duct secretes HCO(3)(-)-rich fluid essential for normal digestion. Optimal stimulation of pancreatic HCO(3)(-) secretion likely requires coupled activities of the cystic fibrosis transmembrane regulator (CFTR) anion channel and apical SLC26 Cl(-)/HCO(3)(-) exchangers. However, whereas stimulated human and guinea pig pancreatic ducts secrete ∼140 mM HCO(3...

متن کامل

5-hydroxytryptamine strongly inhibits fluid secretion in guinea pig pancreatic duct cells.

We studied the distribution of 5-hydroxytryptamine- (5-HT-) containing cells in the guinea pig pancreas and examined the effects of 5-HT on fluid secretion by interlobular pancreatic ducts. The 5-HT-immunoreactive cells with morphological characteristics of enterochromaffin (EC) cells were scattered throughout the duct system and were enriched in islets of Langerhans. The fluid secretory rate i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 285 2  شماره 

صفحات  -

تاریخ انتشار 2003