Characterization of the arene-oxidizing intermediate in ToMOH as a diiron(III) species.
نویسندگان
چکیده
We report the generation and characterization of a diiron(III) intermediate formed during reaction with dioxygen of the reduced hydroxylase component of toluene/o-xylene monooxygenase from Pseudomonas sp. OX1. The decay rate of this species is accelerated upon mixing with phenol, a substrate for this system. Under steady-state conditions, hydrogen peroxide was generated in the absence of substrate. The oxidized hydroxylase also decomposed hydrogen peroxide to liberate dioxygen in the absence of reducing equivalents. This activity suggests that dioxygen activation may be reversible. The linear free energy relationship determined from hydroxylation of para-substituted phenols under steady-state turnover has a negative slope. A value of rho < 0 is consistent with electrophilic attack by the oxidizing intermediate on the aromatic substrates. The results from these steady and pre-steady-state experiments provide compelling evidence that the diiron(III) intermediate is the active oxidant in the toluene/o-xylene monooxygenase system and is a peroxodiiron(III) transient, despite differences between its optical and Mössbauer spectroscopic parameters and those of other peroxodiiron(III) centers.
منابع مشابه
Characterization of a Peroxodiiron(III) Intermediate in the T201S Variant of Toluene/o-Xylene Monooxygenase Hydroxylase from Pseudomonas sp. OX1 Citation
We report the observation of a novel intermediate in the reaction of a reduced toluene/o-xylene monooxygenase hydroxylase (ToMOHred) T201S variant, in the presence of a regulatory protein (ToMOD), with dioxygen. This species is the first oxygenated intermediate with an optical band in any toluene monooxygenase. The UV-Vis and Mössbauer spectroscopic properties of the intermediate allowing us to...
متن کاملA Flexible Glutamine Regulates the Catalytic Activity of Toluene o-Xylene Monooxygenase
Toluene/o-xylene monooxygenase (ToMO) is a bacterial multicomponent monooxygenase capable of oxidizing aromatic substrates. The carboxylate-rich diiron active site is located in the hydroxylase component of ToMO (ToMOH), buried 12 Å from the surface of the protein. A small, hydrophilic pore is the shortest pathway between the diiron active site and the protein exterior. In this study of ToMOH f...
متن کاملDioxygen Activation and Substrate Hydroxylation by the Hydroxylase Component of Toluene/o-xylene Monooxygenase
Non-heme carboxylate-bridged diiron centers in the hydroxylase components of the bacterial multicomponent monooxygenases activate dioxygen at structurally homologous active sites. Catalysis requires the management of four substrates: electrons, protons, dioxygen, and hydrocarbons. Protein component complexes control the delivery of these substrates to the diiron center in the hydroxylase ensuri...
متن کاملNew mechanistic insight into intramolecular arene hydroxylation initiated by (μ-1,2-peroxo)diiron(III) complexes with dinucleating ligands.
(μ-1,2-Peroxo)diiron(iii) complexes (-R) with dinucleating ligands (R-L) generated from the reaction of bis(μ-hydroxo)diiron(ii) complexes [Fe2(R-L)(OH)2](2+) (-R) with dioxygen in acetone at -20 °C provide a diiron-centred electrophilic oxidant, presumably diiron(iv)-oxo species, which is involved in aromatic ligand hydroxylation.
متن کاملDioxygen activation at non-heme diiron centers: characterization of intermediates in a mutant form of toluene/o-xylene monooxygenase hydroxylase.
We report the generation and characterization of an intermediate in a mutant form of the toluene/o-xylene monooxygenase hydroxylase component from Pseudomonas stutzeri OX1. The reaction of chemically reduced I100W variant in the presence of the coupling protein, ToMOD, with dioxygen was monitored by stopped-flow UV/visible spectroscopy. Rapid-freeze quench (RFQ) samples were also generated for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 129 46 شماره
صفحات -
تاریخ انتشار 2007