Generic Bernstein-sato Polynomial on an Irreducible Affine Scheme

نویسنده

  • ROUCHDI BAHLOUL
چکیده

Given p polynomials with coefficients in a commutative unitary integral ring C containing Q, we define the notion of a generic Bernstein-Sato polynomial on an irreducible affine scheme V ⊂ Spec(C). We prove the existence of such a non zero rational polynomial which covers and generalizes previous existing results by H. Biosca. When C is the ring of an algebraic or analytic space, we deduce a stratification of the space of the parameters such that on each stratum, there is a non zero rational polynomial which is a Bernstein-Sato polynomial for any point of the stratum. This generalizes a result of A. Leykin obtained in the case p =

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. A G ] 1 9 Se p 20 05 BERNSTEIN - SATO POLYNOMIALS OF ARBITRARY VARIETIES

We introduce the notion of Bernstein-Sato polynomial of an arbitrary variety (which is not necessarily reduced nor irreducible), using the theory of V -filtrations of M. Kashiwara and B. Malgrange. We prove that the decreasing filtration by multiplier ideals coincides essentially with the restriction of the V -filtration. This implies a relation between the roots of the Bernstein-Sato polynomia...

متن کامل

Effective Methods for the Computation of Bernstein-Sato polynomials for Hypersurfaces and Affine Varieties

This paper is the widely extended version of the publication, appeared in Proceedings of ISSAC’2009 conference (Andres, Levandovskyy, and Mart́ın-Morales, 2009). We discuss more details on proofs, present new algorithms and examples. We present a general algorithm for computing an intersection of a left ideal of an associative algebra over a field with a subalgebra, generated by a single element...

متن کامل

Bernstein-sato Polynomial versus Cohomology of the Milnor Fiber for Generic Arrangements

In this note we determine the Bernstein-Sato polynomial bQ(s) of a generic central arrangement Q = ∏k i=1 Hi of hyperplanes. We establish a connection between the roots of bQ(s) and the degrees of the generators for the top cohomology of the corresponding Milnor fiber. This connection holds for all homogeneous polynomials. We also introduce certain subschemes of the arrangement determined by th...

متن کامل

Generic Gröbner Bases in D-modules and Application to Algebraic and Analytic Gröbner Fans

The contribution of this paper lies in two aspects. The first one deals with a natural notion of generic Gröbner (or standard) bases on an irreducible affine scheme for an ideal depending on parameters. This takes place in rings of differential operators and concerns the algebraic and the formal case. Thus we obtain a generalization of some known results in polynomial rings. The second aspect i...

متن کامل

Bernstein-sato Polynomials of Hyperplane Arrangements

Using a generalization of Malgrange’s formula and a solution of Aomoto’s conjecture due to Esnault, Schechtman and Viehweg, we calculate the Bernstein-Sato polynomial (i.e. b-function) of a hyperplane arrangement with a reduced equation, and show that its roots are greater than−2 and the multiplicity of −1 coincides with the (effective) dimension. As a corollary we get a new proof of Walther’s ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003