Erratum to "Classification in the presence of class noise using a probabilistic kernel fisher method": [Pattern Recognition 40 (12) 3349-3357]
نویسندگان
چکیده
Erratum Erratum to " Classification in the presence of class noise using a probabilistic kernel fisher method " In the above article: The caption of Fig. 1a should read 'Conditional distribution' not 'Condition distribution'. The left side of Eq. (6) should read the covariance matrix 'y', not 'y'.
منابع مشابه
Classification in the presence of class noise using a probabilistic Kernel Fisher method
In machine learning, class noise occurs frequently and deteriorates the classifier derived from the noisy data set. This paper presents two promising classifiers for this problem based on a probabilistic model proposed by Lawrence and Schölkopf (2001). The proposed algorithms are able to tolerate class noise, and extend the earlier work of Lawrence and Schölkopf in two ways. First, we present a...
متن کاملClass-noise Tolerant Classification Based on a Probabilistic Noise Model
Class noise usually means the erroneous labeling of the training examples. In pattern recognition problems, class noise occurs frequently and deteriorates the classifier derived from the noisy dataset. For instance, in some adaptive image segmentation system, the class labels of the training pixels are assigned automatically and sometimes contain errors. Since image segmentation plays a crucial...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 41 شماره
صفحات -
تاریخ انتشار 2008