Fast and Simple Iterative Algorithm of Lp-Norm Minimization for Under-Determined Speech Separation

نویسندگان

  • Yasuharu Hirasawa
  • Naoki Yasuraoka
  • Toru Takahashi
  • Tetsuya Ogata
  • Hiroshi G. Okuno
چکیده

This paper presents an efficient algorithm to solve Lp-norm minimization problem for under-determined speech separation; that is, for the case that there are more sound sources than microphones. We employ an auxiliary function method in order to derive update rules under the assumption that the amplitude of each sound source follows generalized Gaussian distribution. Experiments reveal that our method solves the L1-norm minimization problem ten times faster than a general solver, and also solves Lp-norm minimization problem efficiently, especially when the parameter p is small; when p is not more than 0.7, it runs in real-time without loss of separation quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residual norm steepest descent based iterative algorithms for Sylvester tensor equations

Consider the following consistent Sylvester tensor equation[mathscr{X}times_1 A +mathscr{X}times_2 B+mathscr{X}times_3 C=mathscr{D},]where the matrices $A,B, C$ and the tensor $mathscr{D}$ are given and $mathscr{X}$ is the unknown tensor. The current paper concerns with examining a simple and neat framework for accelerating the speed of convergence of the gradient-based iterative algorithm and ...

متن کامل

Power-iterative strategy for ℓp-ℓ2 optimization for compressive sensing: Towards global solution

We study nonconvex relaxation of the combinatorial l0-minimization for compressive sensing. In an lp-l2 minimization setting with p < 1, we propose an iterative algorithm with two distinct features: (i) use of a proximal-point (P-P) objective function composed of a convex quadratic term and an lp-norm term, and a fast parallel-based solver for global minimization of the P-P function in each ite...

متن کامل

An Effective Iterative Algorithm for Modeling of Multicomponent Gas Separation in a Countercurrent Membrane Permeator

 A model is developed for separation of multicomponent gas mixtures in a countercurrent hollow fiber membrane module. While the model’s solution in countercurrent module usually involves in a time consuming iterative procedure, a proper initial guess is proposed for beginning the calculation and a simple procedure is introduced for correcting the guesses, hereby the CPU time is decreased ess...

متن کامل

Complex Nonconvex l p Norm Minimization for Underdetermined Source Separation

Underdetermined source separation methods often rely on the assumption that the time-frequency source coefficients are independent and Laplacian distributed. In this article, we extend these methods by assuming that these coefficients follow a generalized Gaussian prior with shape parameter p. We study mathematical and experimental properties of the resulting complex nonconvex lp norm optimizat...

متن کامل

A Fast Method for Sparse Component Analysis Based on Iterative Detection-Estimation

We introduce a new iterative algorithm for Sparse Component Analysis (SCA). The algorithm, which we call Iterative Detection-Estimation (IDE), is essentially a method to find sufficiently sparse solutions of underdetermined linear systems of equations. In the SCA context, this solves the source separation part of the problem. Each iteration of IDE consists of two steps. In the detection step, s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011