Novel Efficient Classifiers Based on Data Cube
نویسنده
چکیده
Existing decision tree algorithms need to recursively partition dataset into subsets according to some splitting criteria. For large data sets, this requires multiple passes of original dataset and therefore is often infeasible in many applications. In this article we use statistics trees to compute the data cube and then build a decision tree on top of it. Mining on aggregated data will be much more efficient than directly mining on flat data files or relational databases. Since data cube server is usually a required component in an analytical system for answering OLAP queries, we essentially provide “free” classification. Our new algorithm generates trees of the same prediction accuracy as existing decision tree algorithms such as SPRINT and RainForest, but improves performance significantly. In this article we also give a system architecture that integrates DBMS, OLAP, and data mining seamlessly.
منابع مشابه
SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملA Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملNovel Techniques for Data Warehousing and Online Analytical Processing in Emerging Applications
A data warehouse is a collection of data for supporting of decision making process. Data cubes and on-line analytical processing(OLAP) have become very popular techniques to help users analyze data in a warehouse. Even though previous studies on a data warehouse and data cube have been proposed and developed, as new applications emerging, there are still technical challenges which have not been...
متن کاملA Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning
In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJDWM
دوره 1 شماره
صفحات -
تاریخ انتشار 2005