A comparative in vitro evaluation of self-assembled PTX-PLA and PTX-MPEG-PLA nanoparticles

نویسندگان

  • Fei Cui
  • Yang Li
  • Shuifan Zhou
  • Mengmeng Jia
  • Xiangrui Yang
  • Fei Yu
  • Shefang Ye
  • Zhenqing Hou
  • Liya Xie
چکیده

We present a dialysis technique to direct the self-assembly of paclitaxel (PTX)-loaded nanoparticles (NPs) using methoxypolyethylene glycol-poly(d,l-lactide) (MPEG-PLA) and PLA, respectively. The composition, morphology, particle size and zeta potential, drug loading content, and drug encapsulation efficiency of both PTX-PLA NPs and PTX-MPEG-PLA NPs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, dynamic light scattering, electrophoretic light scattering, and high-performance liquid chromatography. The passive targeting effect and in vitro cell viability of the PTX-MPEG-PLA NPs on HeLa cells were demonstrated by comparative cellular uptake and MTT assay of the PTX-PLA NPs. The results showed that the PTX-MPEG-PLA NPs and PTX-PLA NPs presented a hydrodynamic particle size of 179.5 and 441.9 nm, with a polydispersity index of 0.172 and 0.189, a zeta potential of -24.3 and -42.0 mV, drug encapsulation efficiency of 18.3% and 20.0%, and drug-loaded content of 1.83% and 2.00%, respectively. The PTX-MPEG-PLA NPs presented faster release rate with minor initial burst compared to the PTX-PLA NPs. The PTX-MPEG-PLA NPs presented superior cell cytotoxicity and excellent cellular uptake compared to the PTX-PLA NPs. These results suggested that the PTX-MPEG-PLA NPs presented more desirable characteristics for sustained drug delivery compared to PTX-PLA NPs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of drug release from paclitaxel loaded polylactic acid nanofibers

Objective(s): In this study, drug loaded electrospun nanofibrous mats were prepared and drug release and mechanism from prepared nanofibers were investigated.  Materials and Methods: Paclitaxel (PTX) loaded polylactic acid (PLA) nanofibers were prepared by electrospinning. The effects of process parameters, such as PTX concentration, tip to collector distance, voltage, temperature and flow rate...

متن کامل

Development and evaluation of novel tumor-targeting paclitaxel-loaded nano-carriers for ovarian cancer treatment: in vitro and in vivo.

BACKGROUND Ovarian cancer is the most leading cause of death and the third most common gynecologic malignancy in women. Traditional chemotherapy has inevitable drawbacks of nonspecific tumor targeting, high toxicity, and poor therapeutic efficiency. In order to overcome such shortcomings, we prepared a novel nano-carrier drug-delivery system to enhance the anti-tumor efficiency. METHODS In vi...

متن کامل

Encapsulated paclitaxel nanoparticles exhibit enhanced anti-tumor efficacy in A549 non-small lung cancer cells.

In the present study, paclitaxel (PTX) were encapsulated with polyethylene glycol (PEG)-polylactide (PLA)/D-α tocopheryl polyethylene glycol 1000 succinate (TPGS) (PEG-PLA/TPGS) and the enhanced anti-tumor activity of this PTX mixed micelles (PTX-MM) was evaluated in lung cancer cells. The PTX-MM prepared by a solvent evaporation method was demonstrated to have high drug-loading efficiency (23....

متن کامل

Formulation and evaluation of paclitaxel-loaded polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer.

To develop potent paclitaxel (PTX) formulations for cancer chemotherapy, we formulated PTX into polymeric nanoparticles composed of polyethylene glycol (PEG) and polylactic acid (PLA) block copolymer (PN-PTX). First, the physicochemical properties of PN-PTX prepared were assessed; the mean particle size was around 80 nm and the zeta potential was found to be almost neutral. Next, the in vitro P...

متن کامل

Self-Assembled Polymeric Micellar Nanoparticles as Nanocarriers for Poorly Soluble Anticancer Drug Ethaselen

A series of monomethoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) diblock copolymers were synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and delivery of a promising anticancer drug ethaselen. Ethaselen was efficiently encapsulated into the micelles by the dialysis method, and the solubility of ethaselen in water was remarkably increased up to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013