Neural tuning matches frequency-dependent time differences between the ears
نویسندگان
چکیده
The time it takes a sound to travel from source to ear differs between the ears and creates an interaural delay. It varies systematically with spatial direction and is generally modeled as a pure time delay, independent of frequency. In acoustical recordings, we found that interaural delay varies with frequency at a fine scale. In physiological recordings of midbrain neurons sensitive to interaural delay, we found that preferred delay also varies with sound frequency. Similar observations reported earlier were not incorporated in a functional framework. We find that the frequency dependence of acoustical and physiological interaural delays are matched in key respects. This suggests that binaural neurons are tuned to acoustical features of ecological environments, rather than to fixed interaural delays. Using recordings from the nerve and brainstem we show that this tuning may emerge from neurons detecting coincidences between input fibers that are mistuned in frequency.
منابع مشابه
Neural development of binaural tuning through Hebbian learning predicts frequency-dependent best delays.
Birds use microsecond differences in the arrival times of the sounds at the two ears to infer the location of a sound source in the horizontal plane. These interaural time differences (ITDs) are encoded by binaural neurons which fire more when the ITD matches their "best delay." In the textbook model of sound localization, the best delays of binaural neurons reflect the differences in axonal de...
متن کاملCritical bandwidth for phase discrimination in hearing-impaired listeners.
Monaural phase discrimination was evaluated in normal-hearing and hearing-impaired listeners as a function of the frequency separation among components in three-tone complexes. The phases of the center components of 100% sinusoidal amplitude-modulated (SAM) waveforms were shifted by 90 degrees to yield quasi-frequency-modulated (QFM) waveforms that had identical long-term spectra but different ...
متن کاملPosition-dependent hearing in three species of bushcrickets (Tettigoniidae, Orthoptera)
A primary task of auditory systems is the localization of sound sources in space. Sound source localization in azimuth is usually based on temporal or intensity differences of sounds between the bilaterally arranged ears. In mammals, localization in elevation is possible by transfer functions at the ear, especially the pinnae. Although insects are able to locate sound sources, little attention ...
متن کاملActive Process Mediates Species-Specific Tuning of Drosophila Ears
The courtship behavior of Drosophilid flies has served as a long-standing model for studying the bases of animal communication. During courtship, male flies flap their wings to send a complex pattern of airborne vibrations to the antennal ears of the females. These "courtship songs" differ in their spectrotemporal composition across species and are considered a crucial component of the flies' p...
متن کاملBOLD responses to different temporal frequency stimuli in the lateral geniculate nucleus and visual cortex: Insights into the neural basis of fMRI
The neural basis of the blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) remains largely unknown after decades of research. To investigate this issue, the unique property of the temporal frequency tuning that could separate neural input and output in the primary visual cortex was used as a model. During moving grating stimuli of 1, 2, 10 and 20Hz temporal fr...
متن کامل