Algorithms for Unipolar and Generalized Split Graphs
نویسندگان
چکیده
A graph G = (V,E) is a unipolar graph if there exits a partition V = V1 ∪ V2 such that, V1 is a clique and V2 induces the disjoint union of cliques. The complement-closed class of generalized split graphs are those graphs G such that either G or the complement of G is unipolar. Generalized split graphs are a large subclass of perfect graphs. In fact, it has been shown that almost all C5-free (and hence, almost all perfect graphs) are generalized split graphs. In this paper we present a recognition algorithm for unipolar graphs that utilizes a minimal triangulation of the given graph, and produces a partition when one exists. Our algorithm has running time O(nm), where m is the number of edges in a minimal triangulation of the given graph. Generalized split graphs can recognized via this algorithm in O(nm+nm) = O(n) time. We give algorithms on unipolar graphs for finding a maximum independent set and a minimum clique cover in O(n+m) time and for finding a maximum clique and a minimum proper coloring in O(n/ logn), when a unipolar partition is given. These algorithms yield algorithms for the four optimization problems on generalized split graphs that have the same worst-case time bound. We also prove that the perfect code problem is NP-Complete for unipolar graphs.
منابع مشابه
Recognition of unipolar and generalised split graphs
A graph is unipolar if it can be partitioned into a clique and a disjoint union of cliques, and a graph is a generalised split graph if it or its complement is unipolar. A unipolar partition of a graph can be used to find efficiently the clique number, the stability number, the chromatic number, and to solve other problems that are hard for general graphs. We present an O(n)-time algorithm for ...
متن کاملParameterized Algorithms for Recognizing Monopolar and 2-Subcolorable Graphs
We consider the recognition problem for two graph classes that generalize split and unipolar graphs, respectively. First, we consider the recognizability of graphs that admit a monopolar partition: a partition of the vertex set into sets A,B such that G[A] is a disjoint union of cliques and G[B] an independent set. If in such a partition G[A] is a single clique, then G is a split graph. We show...
متن کامل$Z_k$-Magic Labeling of Some Families of Graphs
For any non-trivial abelian group A under addition a graph $G$ is said to be $A$-textit{magic} if there exists a labeling $f:E(G) rightarrow A-{0}$ such that, the vertex labeling $f^+$ defined as $f^+(v) = sum f(uv)$ taken over all edges $uv$ incident at $v$ is a constant. An $A$-textit{magic} graph $G$ is said to be $Z_k$-magic graph if the group $A$ is $Z_k$ the group of integers modulo $k...
متن کاملThe edge tenacity of a split graph
The edge tenacity Te(G) of a graph G is dened as:Te(G) = min {[|X|+τ(G-X)]/[ω(G-X)-1]|X ⊆ E(G) and ω(G-X) > 1} where the minimum is taken over every edge-cutset X that separates G into ω(G - X) components, and by τ(G - X) we denote the order of a largest component of G. The objective of this paper is to determine this quantity for split graphs. Let G = (Z; I; E) be a noncomplete connected split...
متن کاملOn Chordal-k-Generalized Split Graphs
A graph G is a chordal-k-generalized split graph if G is chordal and there is a clique Q in G such that every connected component in G[V \ Q] has at most k vertices. Thus, chordal-1-generalized split graphs are exactly the split graphs. We characterize chordal-k-generalized split graphs by forbidden induced subgraphs. Moreover, we characterize a very special case of chordal-2-generalized split ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 162 شماره
صفحات -
تاریخ انتشار 2014