Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

نویسندگان

  • Jacob P. Beam
  • Hans C. Bernstein
  • Zackary J. Jay
  • Mark A. Kozubal
  • Ryan deM. Jennings
  • Susannah G. Tringe
  • William P. Inskeep
چکیده

Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3-3.5; temperature = 68-75°C) in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4-40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14-30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1-2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day(-1), and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen Peroxide Cycling in High-Temperature Acidic Geothermal Springs and Potential Implications for Oxidative Stress Response

Hydrogen peroxide (H2O2), superoxide (O •− 2 ), and hydroxyl radicals (OH ) are produced in natural waters via ultraviolet (UV) light-induced reactions between dissolved oxygen (O2) and organic carbon, and further reaction of H2O2 and Fe(II) (i.e., Fenton chemistry). The temporal and spatial dynamics of H2O2 and other dissolved compounds [Fe(II), Fe(III), H2S, O2] were measured during a diel cy...

متن کامل

Metagenomes from High-Temperature Chemotrophic Systems Reveal Geochemical Controls on Microbial Community Structure and Function

The Yellowstone caldera contains the most numerous and diverse geothermal systems on Earth, yielding an extensive array of unique high-temperature environments that host a variety of deeply-rooted and understudied Archaea, Bacteria and Eukarya. The combination of extreme temperature and chemical conditions encountered in geothermal environments often results in considerably less microbial diver...

متن کامل

Algal species and light microenvironment in a low-pH, geothermal microbial mat community.

Unicellular algae are the predominant microbial mat-forming phototrophs in the extreme environments of acidic geothermal springs. The ecology of these algae is not well known because concepts of species composition are inferred from cultivated isolates and microscopic observations, methods known to provide incomplete and inaccurate assessments of species in situ. We used sequence analysis of 18...

متن کامل

Microbial Iron Cycling in Acidic Geothermal Springs of Yellowstone National Park: Integrating Molecular Surveys, Geochemical Processes, and Isolation of Novel Fe-Active Microorganisms

Geochemical, molecular, and physiological analyses of microbial isolates were combined to study the geomicrobiology of acidic iron oxide mats in Yellowstone National Park. Nineteen sampling locations from 11 geothermal springs were studied ranging in temperature from 53 to 88°C and pH 2.4 to 3.6. All iron oxide mats exhibited high diversity of crenarchaeal sequences from the Sulfolobales, Therm...

متن کامل

Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming.

Microbial mats are a visible and abundant life form inhabiting the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated with a phototrophic green/purple Zygogonium microbial mat community that inhabits low-temperature regions of acidic (pH approximately 3.0) th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016