A global solution to a two-dimensional Riemann problem involving shocks as free boundaries
نویسندگان
چکیده
We present a global solution to a Riemann problem for the pressure gradient system of equations. The Riemann problem has initially two shock waves and two contact discontinuities. The angle between the two shock waves is set initially to be close to 180 degrees. The solution has a shock wave that is usually regarded as a free boundary in the self-similar variable plane. Our main contribution in methodology is handling the tangential oblique derivative boundary values.
منابع مشابه
On the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators
In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...
متن کاملSelf-similar solutions of the Riemann problem for two-dimensional systems of conservation laws
In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem
متن کاملA Complete Global Solution to the Pressure Gradient Equation
We study the domain of existence of a solution to a Riemann problem for the pressure gradient equation in two space dimensions. The Riemann problem is the expansion of a quadrant of gas of constant state into the other three vacuum quadrants. The global existence of a smooth solution was established in Dai and Zhang [Arch. Rational Mech. Anal., 155(2000), 277-298] up to the free boundary of vac...
متن کاملFree Boundary Problems for Nonlinear Wave Systems: Mach Stems for Interacting Shocks
We study a family of two-dimensional Riemann problems for compressible flow modeled by the nonlinear wave system. The initial constant states are separated by two jump discontinuities, x = ±κay, which develop into two interacting shock waves. We consider shock angles in a range where regular reflection is not possible. The solution is symmetric about the y-axis and on each side of the y-axis co...
متن کاملThree-dimensional Interaction of Shocks in Irrotational Flows
The general d-dimensional Riemann problem raises naturally the question of resolving the interaction of d planar shocks merging at a point. In gas dynamics, we may consider only standing shocks. This problem has received a satisfactory answer in dimension d = 2 (see [2, 3]). We investigate the 3-dimensional case. We restrict to the irrotational case, in order to keep the complexity of the solut...
متن کامل