The Class Number of the Cyclotomic Field.

نویسندگان

  • N C Ankeny
  • S Chowla
چکیده

1. Let g denote any odd prime and h = h(g) the class number of the cyclotomic field R(r), where r is the primitive gth root of unity, R the rational numbers. It is known that we can write: h = h1h2, where hi and h2 (both integers) are the so-called first and second factors of the class number; in fact h2 is the class number of the real field of degree 2 under R(r), namely the field R(D + D-). Kummer conjectured (J. Math., 16, 473 (1851)) that g(g+3)/4 hl t-2(9-3)/2 (g-1)/2 = G. (1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calculation of the First Factor of the Class Number of the Cyclotomic Field

The values of the first factor Hx(m) of the class number of the with cyclotomic field are tabulated for 120 composite rre's larger than 100. A conjecture concerning a divisibility property of Hx{m) is stated.

متن کامل

CLASS NUMBER PARITY FOR THE pTH CYCLOTOMIC FIELD

We study the parity of the class number of the pth cyclotomic field for p prime. By analytic methods we derive a parity criterion in terms of polynomials over the field of 2 elements. The conjecture that the class number is odd for p a prime of the form 2q +1, with q prime, is proved in special cases, and a heuristic argument is given in favor of the conjecture. An implementation of the criteri...

متن کامل

Ideal Class Groups of Cyclotomic Number Fields I

Following Hasse’s example, various authors have been deriving divisibility properties of minus class numbers of cyclotomic fields by carefully examining the analytic class number formula. In this paper we will show how to generalize these results to CM-fields by using class field theory. Although we will only need some special cases, we have also decided to include a few results on Hasse’s unit...

متن کامل

On the Cyclotomic Polynomial

For a given positive integer m and an algebraic number field K necessary and sufficient conditions for the mth cyclotomic polynomial to have K-integral solutions modulo a given integer of K are given. Among applications thereof are: that the solvability of the cyclotomic polynomial mod an integer yields information about the class number of related number fields; and about representation of int...

متن کامل

Prime decomposition in the anti-cyclotomic extension

For an imaginary quadratic number field K and an odd prime number l, the anti-cyclotomic Zl-extension of K is defined. For primes p of K, decomposition laws for p in the anti-cyclotomic extension are given. We show how these laws can be applied to determine if the Hilbert class field (or part of it) of K is Zl-embeddable. For some K and l, we find explicit polynomials whose roots generate the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 35 9  شماره 

صفحات  -

تاریخ انتشار 1949