On axiomatizations of the Shapley value for assignment games∗
نویسندگان
چکیده
We consider the problem of axiomatizing the Shapley value on the class of assignment games. We first show that several axiomatizations of the Shapley value on the class of all TU-games do not characterize this solution on the class of assignment games by providing alternative solutions that satisfy these axioms. However, when considering an assignment game as a communication graph game where the game is simply the assignment game and the graph is a corresponding bipartite graph buyers are connected with sellers only, we show that Myerson’s component efficiency and fairness axioms do characterize the Shapley value on the class of assignment games. Moreover, these two axioms have a natural interpretation for assignment games. Component efficiency yields submarket efficiency stating that the sum of the payoffs of all players in a submarket equals the worth of that submarket, where a submarket is a set of buyers and sellers such that all buyers in this set have zero valuation for the goods offered by the sellers outside the set, and all buyers outside the set have zero valuations for the goods offered by sellers inside the set. Fairness of the graph game solution boils down to valuation fairness stating that only changing the valuation of one particular buyer for the good offered by a particular seller changes the payoffs of this buyer and seller by the same amount.
منابع مشابه
Axiomatizations of the Shapley value for cooperative games on antimatroids
Cooperative games on antimatroids are cooperative games restricted by a combinatorial structure which generalize the permission structure. So, cooperative games on antimatroids group several well-known families of games which have important applications in economics and politics. Therefore, the study of the rectricted games by antimatroids allows to unify criteria of various lines of research. ...
متن کاملCooperative Benefit and Cost Games under Fairness Concerns
Solution concepts in cooperative games are based on either cost games or benefit games. Although cost games and benefit games are strategically equivalent, that is not the case in general for solution concepts. Motivated by this important observation, a new property called invariance property with respect to benefit/cost allocation is introduced in this paper. Since such a property can be regar...
متن کاملThe Shapley Value for Airport and Irrigation Games
In this paper cost sharing problems are considered. We focus on problems on a rooted tree, we call these problems cost-tree problems, and on the induced transferable utility cooperative games, we call these games irrigation games. A formal notion of irrigation games is introduced, and the characterization of the class of these games is provided. The well-known class of airport games (Littlechil...
متن کاملShapley value for assignment games ∗
We consider the problem of the axiomatization of the Shapley value on the class of assignment games. We show that Shapley’s original [21], Young’s [24], Chun’s [7], van den Brink’s [2], (5-6) Hart and Mas-Colell’s [12] potential function and consistency approaches and Roth’s [19] characterization do not work on the class of assignment games. We also consider Myerson’s [15] axiomatization of the...
متن کاملAlternative Axiomatic Characterizations of the Grey Shapley Value
The Shapley value, one of the most common solution concepts of cooperative game theory is defined and axiomatically characterized in different game-theoretic models. Certainly, the Shapley value can be used in interesting sharing cost/reward problems in the Operations Research area such as connection, routing, scheduling, production and inventory situations. In this paper, we focus on the Shapl...
متن کامل