Integration of stable extracellular DNA released from Escherichia coli into the Bacillus subtilis genome vector by culture mix method
نویسندگان
چکیده
The stable cloning of giant DNA is a necessary process in the production of recombinant/synthetic genomes. Handling DNA molecules in test tubes becomes increasingly difficult as their size increases, particularly above 100 kb. The need to prepare such large DNA molecules in a regular manner has limited giant DNA cloning to certain laboratories. Recently, we found stable plasmid DNA of up to 100 kb in Escherichia coli culture medium during the infection and propagation of lambda phage. The extracellular plasmid DNA (excpDNA) released from lysed E. coli was demonstrably stable enough to be taken up by competent Bacillus subtilis also present in the medium. ExcpDNA transfer, induced by simply mixing E. coli lysate with recipient B. subtilis, required no biochemical purification of the DNA. Here, this simple protocol was used to integrate excpDNA into a B. subtilis genome, designated the 'BGM vector'. A slightly modified protocol for DNA cloning in BGM is presented for DNA fragments >100 kb. This technique should facilitate giant DNA cloning in the BGM vector and allow its application to other hosts that can undergo natural transformation.
منابع مشابه
Direct cloning of full-length mouse mitochondrial DNA using a Bacillus subtilis genome vector.
The complete mouse mitochondrial genome (16.3 kb) was directly cloned into a Bacillus subtilis genome (BGM) vector. Two DNA segments of 2.06 and 2.14 kb that flank the internal 12 kb of the mitochondrial DNA (mtDNA) were subcloned into an Escherichia coli plasmid. Subsequent integration of the plasmid at the cloning locus of the BGM vector yielded a derivative specific for the targeted cloning ...
متن کاملCloning and Enhanced Expression of an Extracellular Alkaline Protease from a Soil Isolate of Bacillus clausii in Bacillus subtilis
in the detergent industry. In this study, the extracellular alkaline serine protease gene, aprE, from Bacillusclausii was amplified by PCR and further cloned and expressed in B. subtilis WB600 using the pWB980 expression vector. Protease activity of the recombinant B. subtilis WB600 harboring the plasmid pWB980/aprEreached up to 1020 U/ml, approximately 3-folds higher than the nativ...
متن کاملMolecular cloning of a major cell wall protein gene from protein-producing Bacillus brevis 47 and its expression in Escherichia coli and Bacillus subtilis.
Bacillus brevis 47 contains two major cell wall proteins. Each protein forms a hexagonal array in the cell wall. A 4.8-kilobase HindIII fragment of B. brevis 47 DNA cloned into Escherichia coli with pBR322 as a vector directed the synthesis of polypeptides cross-reactive with antibody to the middle wall protein. A 700-base-pair BamHI-HpaI fragment was shown to be the essential region for the sy...
متن کاملLambda Red recombinase-mediated integration of the high molecular weight DNA into the Escherichia coli chromosome
BACKGROUND Escherichia coli K-12 is a frequently used host for a number of synthetic biology and biotechnology applications and chassis for the development of the minimal cell factories. Novel approaches for integrating high molecular weight DNA into the E. coli chromosome would therefore greatly facilitate engineering efforts in this bacterium. RESULTS We developed a reliable and flexible la...
متن کاملCombining Genes from Multiple Phages for Improved Cell Lysis and DNA Transfer from Escherichia coli to Bacillus subtilis
The ability to efficiently and reliably transfer genetic circuits between the key synthetic biology chassis, such as Escherichia coli and Bacillus subtilis, constitutes one of the major hurdles of the rational genome engineering. Using lambda Red recombineering we integrated the thermosensitive lambda repressor and the lysis genes of several bacteriophages into the E. coli chromosome. The lysis...
متن کامل