Nuclear import mechanism for myocardin family members and their correlation with vascular smooth muscle cell phenotype.

نویسندگان

  • Seiji Nakamura
  • Ken'ichiro Hayashi
  • Kazuhiro Iwasaki
  • Tomoaki Fujioka
  • Hiroshi Egusa
  • Hirofumi Yatani
  • Kenji Sobue
چکیده

Myocardin (Mycd), which is essential for the differentiation of the smooth muscle cell lineage, is constitutively located in the nucleus, although its family members, myocardin-related transcription factors A and B (MRTF-A/B), mostly reside in the cytoplasm and translocate to the nucleus in response to Rho signaling. The mechanism for their nuclear import is unclear. Here we investigated the mechanism for the nuclear import of Mycd family members and demonstrated any correlation between such mechanism and the phenotype of vascular smooth muscle cells (VSMCs). In cultured VSMCs, the knockdown of importin β1 inhibited the nuclear import of Mycd and MRTF-A/B. Their NH(2)-terminal basic domain was identified as a binding site for importin α/β1 by in vitro analyses. However, Mycd had a higher affinity for importin α/β1 than did MRTF-A/B, even in the absence of G-actin, and Mycd affinity for importin α1/β1 was stronger than for any other importin α/β1 heterodimers. The binding of Mycd to importin α/β1 was insensitive to G-actin, whereas that of MRTF-A/B was differently inhibited by G-actin. In dedifferentiated VSMCs, the levels of importins α1 and β1 were reduced concomitant with down-regulation of Mycd, serum response factor, and smooth muscle cell markers. By contrast, in differentiated VSMCs, their expressions were up-regulated. Thus, the nuclear import of Mycd family members in VSMCs depends on importin α/β1, and their relative affinities for importin α/β1 heterodimers determine Mycd nuclear import. The expression of Mycd nuclear import machineries is related to the expression levels of VSMC phenotype-dependent smooth muscle cell markers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urokinase receptor associates with myocardin to control vascular smooth muscle cells phenotype in vascular disease.

OBJECTIVE The urokinase-type plasminogen activator (uPA) and its specific receptor (uPAR) are a potent multifunctional system involved in vascular remodeling. The goal of the study was to unravel the mechanisms of uPA/uPAR-directed vascular smooth muscle cell (VSMC) differentiation. METHODS AND RESULTS Using cultured human primary VSMCs, we identified a new molecular mechanism controlling phe...

متن کامل

Mitogen-activated protein kinase 14 is a novel negative regulatory switch for the vascular smooth muscle cell contractile gene program.

OBJECTIVE Several studies have shown through chemical inhibitors that p38 mitogen-activated protein kinase (MAPK) promotes vascular smooth muscle cell (VSMC) differentiation. Here, we evaluate the effects of knocking down a dominant p38MAPK isoform on VSMC differentiation. METHODS AND RESULTS Knockdown of p38MAPKα (MAPK14) in human coronary artery SMCs unexpectedly increases VSMC differentiat...

متن کامل

Spry1 and Spry4 Differentially Regulate Human Aortic Smooth Muscle Cell Phenotype via Akt/FoxO/Myocardin Signaling

BACKGROUND Changes in the vascular smooth muscle cell (VSMC) contractile phenotype occur in pathological states such as restenosis and atherosclerosis. Multiple cytokines, signaling through receptor tyrosine kinases (RTK) and PI3K/Akt and MAPK/ERK pathways, regulate these phenotypic transitions. The Spry proteins are feedback modulators of RTK signaling, but their specific roles in VSMC have no...

متن کامل

Calcineurin-GATA-6 pathway is involved in smooth muscle–specific transcription

Intracellular calcium is one of the important signals that initiates the myogenic program. The calcium-activated phosphatase calcineurin is necessary for the nuclear import of the nuclear factor of activated T cell (NFAT) family members, which interact with zinc finger GATA transcription factors. Whereas GATA-6 plays a role in the maintenance of the differentiated phenotype in vascular smooth m...

متن کامل

Phenotypic modulation of smooth muscle cells through interaction of Foxo4 and myocardin.

Smooth muscle cells (SMCs) modulate their phenotype between proliferative and differentiated states in response to physiological and pathological cues. Insulin-like growth factor-I stimulates differentiation of SMCs by activating phosphoinositide-3-kinase (PI3K)-Akt signaling. Foxo forkhead transcription factors act as downstream targets of Akt and are inactivated through phosphorylation by Akt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 48  شماره 

صفحات  -

تاریخ انتشار 2010