BET bromodomain proteins regulate enhancer function during adipogenesis
نویسندگان
چکیده
Developmental transitions are guided by master regulatory transcription factors. During adipogenesis, a transcriptional cascade culminates in the expression of PPARγ and C/EBPα, which orchestrate activation of the adipocyte gene expression program. However, the coactivators controlling PPARγ and C/EBPα expression are less well characterized. Here, we show the bromodomain-containing protein, BRD4, regulates transcription of PPARγ and C/EBPα. Analysis of BRD4 chromatin occupancy reveals that induction of adipogenesis in 3T3L1 fibroblasts provokes dynamic redistribution of BRD4 to de novo super-enhancers proximal to genes controlling adipocyte differentiation. Inhibition of the bromodomain and extraterminal domain (BET) family of bromodomain-containing proteins impedes BRD4 occupancy at these de novo enhancers and disrupts transcription of Pparg and Cebpa, thereby blocking adipogenesis. Furthermore, silencing of these BRD4-occupied distal regulatory elements at the Pparg locus by CRISPRi demonstrates a critical role for these enhancers in the control of Pparg gene expression and adipogenesis in 3T3L1s. Together, these data establish BET bromodomain proteins as time- and context-dependent coactivators of the adipocyte cell state transition.
منابع مشابه
BET Bromodomain Proteins Function as Master Transcription Elongation Factors Independent of CDK9 Recruitment.
Processive elongation of RNA Polymerase II from a proximal promoter paused state is a rate-limiting event in human gene control. A small number of regulatory factors influence transcription elongation on a global scale. Prior research using small-molecule BET bromodomain inhibitors, such as JQ1, linked BRD4 to context-specific elongation at a limited number of genes associated with massive enha...
متن کاملSensitivity of Small Cell Lung Cancer to BET Inhibition Is Mediated by Regulation of ASCL1 Gene Expression.
The BET (bromodomain and extra-terminal) proteins bind acetylated histones and recruit protein complexes to promote transcription elongation. In hematologic cancers, BET proteins have been shown to regulate expression of MYC and other genes that are important to disease pathology. Pharmacologic inhibition of BET protein binding has been shown to inhibit tumor growth in MYC-dependent cancers, su...
متن کاملInhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery
As a conserved protein interaction module that recognizes and binds to acetylated lysine, bromodomain (BRD) contains a deep, largely hydrophobic acetyl lysine binding site. Proteins that share the feature of containing two BRDs and an extra-terminal domain belong to BET family, including BRD2, BRD3, BRD4 and BRDT. BET family proteins perform transcription regulatory function under normal condit...
متن کاملBromodomain and extraterminal inhibitors block the Epstein-Barr virus lytic cycle at two distinct steps
Lytic infection by the Epstein-Barr virus (EBV) poses numerous health risks, such as infectious mononucleosis and lymphoproliferative disorder. Proteins in the bromodomain and extraterminal (BET) family regulate multiple stages of viral life cycles and provide promising intervention targets. Synthetic small molecules can bind to the bromodomains and disrupt function by preventing recognition of...
متن کاملInhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer
BET (bromodomain and extra-terminal) proteins regulate gene expression through their ability to bind to acetylated chromatin and subsequently activate RNA PolII-driven transcriptional elongation. Small molecule BET inhibitors prevent binding of BET proteins to acetylated histones and inhibit transcriptional activation of BET target genes. BET inhibitors attenuate cell growth and survival in sev...
متن کامل