Homotopy Type of the Boolean Complex of a Coxeter System

نویسنده

  • KÁRI RAGNARSSON
چکیده

In any Coxeter group, the set of elements whose principal order ideals are boolean forms a simplicial poset under the Bruhat order. This simplicial poset defines a cell complex, called the boolean complex. In this paper it is shown that, for any Coxeter system of rank n, the boolean complex is homotopy equivalent to a wedge of (n − 1)-dimensional spheres. The number of such spheres can be computed recursively from the unlabeled Coxeter graph, and defines a new graph invariant called the boolean number. Specific calculations of the boolean number are given for all finite and affine irreducible Coxeter systems, as well as for systems with graphs that are disconnected, complete, or stars. One implication of these results is that the boolean complex is contractible if and only if a generator of the Coxeter system is in the center of the group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boolean complexes and boolean numbers

The Bruhat order gives a poset structure to any Coxeter group. The ideal of elements in this poset having boolean principal order ideals forms a simplicial poset. This simplicial poset defines the boolean complex for the group. In a Coxeter system of rank n, we show that the boolean complex is homotopy equivalent to a wedge of (n− 1)-dimensional spheres. The number of these spheres is the boole...

متن کامل

Boolean Formulae, Hypergraphs and Combinatorial Topology

With a view toward studying the homotopy type of spaces of Boolean formulae, we introduce a simplicial complex, called the theta complex, associated to any hypergraph. In particular, the set of satisfiable formulae in k-conjunctive normal form with ≤ n variables has the homotopy type of Θ(Cube(n, n− k)), where Cube(n, n− k) is a hypergraph associated to the (n− k)-skeleton of an n-cube. We make...

متن کامل

NONLINEAR CONTROL OF HEAT TRANSFER DYNAMIC USING HOMOTOPY PERTURBATION METHOD (HPM)

Nonlinear problems are more challenging and almost complex to be solved. A recently developed Homotopy Perturbation Method (HPM) is introduced. This method is used to represent the system as a less complicated (almost linear) model. To verify the effectiveness, HPM based model is compared with the nonlinear dynamic in both open and closed loop PI controlled. The error indices are approximation ...

متن کامل

The Deligne Complex for the Four-strand Braid Group

This paper concerns the homotopy type of hyperplane arrangements associated to infinite Coxeter groups acting as reflection groups on Cn. A long-standing conjecture states that the complement of such an arrangement should be aspherical. Some partial results on this conjecture were previously obtained by the author and M. Davis. In this paper, we extend those results to another class of Coxeter ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008