Multiplexed Targeted Quantitative Proteomics Predicts Hepatic Glucuronidation Potential.
نویسندگان
چکیده
Phase II metabolism is prominently governed by UDP-glucuronosyltransferases (UGTs) in humans. These enzymes regulate the bioactivity of many drugs and endogenous small molecules in many organs, including the liver, a major site of regulation by the glucuronidation pathway. This study determined the expression of hepatic UGTs by targeted proteomics in 48 liver samples and by measuring the glucuronidation activity using probe substrates. It demonstrates the sensitivity and accuracy of nano-ultra-performance liquid chromatography with tandem mass spectrometry to establish the complex expression profiles of 14 hepatic UGTs in a single analysis. UGT2B7 is the most abundant UGT in our collection of livers, expressed at 69 pmol/mg microsomal proteins, whereas UGT1A1, UGT1A4, UGT2B4, and UGT2B15 are similarly abundant, averaging 30-34 pmol/mg proteins. The average relative abundance of these five UGTs represents 81% of the measured hepatic UGTs. Our data further highlight the strong relationships in the expression of several UGTs. Most notably, UGT1A4 correlates with most measured UGTs, and the expression levels of UGT2B4/UGT2B7 displayed the strongest correlation. However, significant interindividual variability is observed for all UGTs, both at the level of enzyme concentrations and activity (coefficient of variation: 45%-184%). The reliability of targeted proteomics quantification is supported by the high correlation between UGT concentration and activity. Collectively, these findings expand our understanding of hepatic UGT profiles by establishing absolute hepatic concentrations of 14 UGTs and further suggest coregulated expression between most abundant hepatic UGTs. Data support the value of multiplexed targeted quantitative proteomics to accurately assess specific UGT concentrations in liver samples and hepatic glucuronidation potential.
منابع مشابه
Dmd065391 1331..1335
Phase II metabolism is prominently governed by UDPglucuronosyltransferases (UGTs) in humans. These enzymes regulate the bioactivity of many drugs and endogenous small molecules in many organs, including the liver, a major site of regulation by the glucuronidation pathway. This study determined the expression of hepatic UGTs by targeted proteomics in 48 liver samples and by measuring the glucuro...
متن کاملDmd065391 1331..1335
Phase II metabolism is prominently governed by UDPglucuronosyltransferases (UGTs) in humans. These enzymes regulate the bioactivity of many drugs and endogenous small molecules in many organs, including the liver, a major site of regulation by the glucuronidation pathway. This study determined the expression of hepatic UGTs by targeted proteomics in 48 liver samples and by measuring the glucuro...
متن کاملAn Investigation into the Role of Glucuronidation on the Disposition and Toxicity of Mycophenolic Acid Using Targeted Quantitative Proteomics
متن کامل
Combining Amine Metabolomics and Quantitative Proteomics of Cancer Cells Using Derivatization with Isobaric Tags
Quantitative metabolomics and proteomics technologies are powerful approaches to explore cellular metabolic regulation. Unfortunately, combining the two technologies typically requires different LC-MS setups for sensitive measurement of metabolites and peptides. One approach to enhance the analysis of certain classes of metabolites is by derivatization with various types of tags to increase ion...
متن کاملInterspecies variation in the hepatic biotransformation of zearalenone: Evidence for bio-inactivation of mycoestrogen zearalenone in sturgeon fish
Zearalenone (ZEA) as mycoestrogen is found in human foods and animal feeds. Its estrogenic potency depends on its biotransformation fate. The hepatic biotransformation of ZEA in two species of sturgeon fish (Acipenser persicus and Huso huso) was investigated. ZEA was incubated with the hepatic microsomal and post-mitochondrial sub-fractions in the presence of NADPH and the metabolites were dete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 43 9 شماره
صفحات -
تاریخ انتشار 2015