Single Residues in the Outer Pore of TRPV1 and TRPV3 Have Temperature-Dependent Conformations
نویسندگان
چکیده
Thermosensation is mediated by ion channels that are highly temperature-sensitive. Several members of the family of transient receptor potential (TRP) ion channels are activated by cold or hot temperatures and have been shown to function as temperature sensors in vivo. The molecular mechanism of temperature-sensitivity of these ion channels is not understood. A number of domains or even single amino acids that regulate temperature-sensitivity have been identified in several TRP channels. However, it is unclear what precise conformational changes occur upon temperature activation. Here, we used the cysteine accessibility method to probe temperature-dependent conformations of single amino acids in TRP channels. We screened over 50 amino acids in the predicted outer pore domains of the heat-activated ion channels TRPV1 and TRPV3. In both ion channels we found residues that have temperature-dependent accessibilities to the extracellular solvent. The identified residues are located within the second predicted extracellular pore loop. These residues are identical or proximal to residues that were shown to be specifically required for temperature-activation, but not chemical activation. Our data precisely locate conformational changes upon temperature-activation within the outer pore domain. Collectively, this suggests that these specific residues and the second predicted pore loop in general are crucial for the temperature-activation mechanism of these heat-activated thermoTRPs.
منابع مشابه
Camphor modulates TRPV3 cation channels activity by interacting with critical pore-region cysteine residues.
TRPV3 ion channels mediate thermo-transduction, nociception, inflammation and dermatitis in mammals. TRPV1-4 proteins have been shown to have conserved cysteine-residues in the pore-forming regions. These residues participate in channel activation via S-nitrosylation of channel proteins. Camphor is a commonly used ligand for TRPV3 channels. Thus the knowledge about the potential binding/interac...
متن کاملAcute Heat-Evoked Temperature Sensation Is Impaired but Not Abolished in Mice Lacking TRPV1 and TRPV3 Channels
The discovery of heat-sensitive Transient Receptor Potential Vanilloid ion channels (ThermoTRPVs) greatly advanced our molecular understanding of acute and injury-evoked heat temperature sensation. ThermoTRPV channels are activated by partially overlapping temperatures ranging from warm to supra-threshold noxious heat. TRPV1 is activated by noxious heat temperature whereas TRPV3 can be activate...
متن کاملThe Role of C Fibers in Spinal Microglia Induction and Possible Relation with TRPV3 Expression During Chronic Inflammatory Arthritis in Rats
Introduction: Stimulation of peptidergic fibers activates microglia in the dorsal horn. Microglia activation causes fractalkine (FKN) release, a neuron-glia signal, which enhances pain. The transient vanilloid receptor 1 (TRPV1) mediates the release of neuropeptides, which can subsequently activate glia. TRPV1 and TRPV2 are generally expressed on C and Aδ fibers, respe...
متن کاملConserved residues within the putative S4-S5 region serve distinct functions among thermosensitive vanilloid transient receptor potential (TRPV) channels.
The vanilloid transient receptor potential channel TRPV1 is a tetrameric six-transmembrane segment (S1-S6) channel that can be synergistically activated by various proalgesic agents such as capsaicin, protons, heat, or highly depolarizing voltages, and also by 2-aminoethoxydiphenyl borate (2-APB), a common activator of the related thermally gated vanilloid TRP channels TRPV1, TRPV2, and TRPV3. ...
متن کاملSelective potentiation of 2-APB-induced activation of TRPV1-3 channels by acid.
Temperature-sensitive TRP channels are important for responses to pain and inflammation, to both of which tissue acidosis is a major contributing factor. However, except for TRPV1, acid-sensing by other ThermoTRP channels remains mysterious. We show here that unique among TRPV1-3 channels, TRPV3 is directly activated by protons from cytoplasmic side. This effect is very weak and involves key cy...
متن کامل