Learning and Control using Gaussian Processes

نویسندگان

  • Achin Jain
  • Truong X Nghiem
  • Manfred Morari
  • Rahul Mangharam
  • Truong X. Nghiem
چکیده

Building physics-based models of complex physical systems like buildings and chemical plants is extremely cost and time prohibitive for applications such as real-time optimal control, production planning and supply chain logistics. Machine learning algorithms can reduce this cost and time complexity, and are, consequently, more scalable for large-scale physical systems. However, there are many practical challenges that must be addressed before employing machine learning for closed-loop control. This paper proposes the use of Gaussian Processes (GP) for learning control-oriented models: (1) We develop methods for the optimal experiment design (OED) of functional tests to learn models of a physical system, subject to stringent operational constraints and limited availability of the system. Using a Bayesian approach with GP, our methods seek to select the most informative data for optimally updating an existing model. (2) We also show that black-box GP models can be used for receding horizon optimal control with probabilistic guarantees on constraint satisfaction through chance constraints. (3) We further propose an online method for continuously improving the GP model in closed-loop with a real-time controller. Our methods are demonstrated and validated in a case study of building energy control and Demand Response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rate of Entropy for Gaussian Processes

In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...

متن کامل

Adaptive Inverse Control of Flexible Link Robot Using ANFIS Based on Type-2 Fuzzy

This paper presents a novel adaptive neuro-fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part. The capability of the proposed ANFIS2 for function approximation and dynamical system identification is remarkable. The structure of ANFIS2 is very sim...

متن کامل

A Flexible Link Radar Control Based on Type-2 Fuzzy Systems

An adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented in this paper. The capability of the proposed method (we named ANFIS2) for function approximation and dynamical system identification is remarkable. The structure o...

متن کامل

Reinforcement Learning Using Gaussian Processes for Discretely Controlled Continuous Processes

In many application domains such as autonomous avionics, power electronics and process systems engineering there exist discretely controlled continuous processes (DCCPs) which constitute a special subclass of hybrid dynamical systems. We introduce a novel simulation-based approach for DDCPs optimization under uncertainty using Reinforcement Learning with Gaussian Process models to learn the tra...

متن کامل

Using Gaussian Processes to Monitor Diabetes Development

This paper uses Gaussian process techniques to model time series data of HbA1c level, a common measure to monitor or screen diabetes. The HbA1c level estimates how well blood sugar is under control. To facilitate the control of diabetes, we develop a patient-level model to individually predict the development of the disease for each patient. Gaussian processes represent a successful machine lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017