Mechanisms of Rapid Reactive Oxygen Species Generation in Response to Cytosolic Ca2+ or Zn2+ Loads in Cortical Neurons
نویسندگان
چکیده
Excessive "excitotoxic" accumulation of Ca(2+) and Zn(2+) within neurons contributes to neurodegeneration in pathological conditions including ischemia. Putative early targets of these ions, both of which are linked to increased reactive oxygen species (ROS) generation, are mitochondria and the cytosolic enzyme, NADPH oxidase (NOX). The present study uses primary cortical neuronal cultures to examine respective contributions of mitochondria and NOX to ROS generation in response to Ca(2+) or Zn(2+) loading. Induction of rapid cytosolic accumulation of either Ca(2+) (via NMDA exposure) or Zn(2+) (via Zn(2+)/Pyrithione exposure in 0 Ca(2+)) caused sharp cytosolic rises in these ions, as well as a strong and rapid increase in ROS generation. Inhibition of NOX activation significantly reduced the Ca(2+)-induced ROS production with little effect on the Zn(2+)- triggered ROS generation. Conversely, dissipation of the mitochondrial electrochemical gradient increased the cytosolic Ca(2+) or Zn(2+) rises caused by these exposures, consistent with inhibition of mitochondrial uptake of these ions. However, such disruption of mitochondrial function markedly suppressed the Zn(2+)-triggered ROS, while partially attenuating the Ca(2+)-triggered ROS. Furthermore, block of the mitochondrial Ca(2+) uniporter (MCU), through which Zn(2+) as well as Ca(2+) can enter the mitochondrial matrix, substantially diminished Zn(2+) triggered ROS production, suggesting that the ROS generation occurs specifically in response to Zn(2+) entry into mitochondria. Finally, in the presence of the sulfhydryl-oxidizing agent 2,2'-dithiodipyridine, which impairs Zn(2+) binding to cytosolic metalloproteins, far lower Zn(2+) exposures were able to induce mitochondrial Zn(2+) uptake and consequent ROS generation. Thus, whereas rapid acute accumulation of Zn(2+) and Ca(2+) each can trigger injurious ROS generation, Zn(2+) entry into mitochondria via the MCU may do so with particular potency. This may be of particular relevance to conditions like ischemia in which cytosolic Zn(2+) buffering is impaired due to acidosis and oxidative stress.
منابع مشابه
Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production.
Synaptically released Zn2+ can enter and cause injury to postsynaptic neurons. Microfluorimetric studies using the Zn2+-sensitive probe, Newport green, examined levels of [Zn2+]i attained in cultured cortical neurons on exposure to N-methyl-D-asparte, kainate, or high K+ (to activate voltage-sensitive Ca2+ channels) in the presence of 300 microM Zn2+. Indicating particularly high permeability t...
متن کاملThe Effect of Noscapine on Oxygen-Glucose Deprivation on Primary Murine Cortical Neurons in High Glucose Condition
AbstractIn the present work we set out to investigate the neuroprotective effects of noscapine (0.5-2 µM) in presence of D-glucose on primary murine foetal cortical neurons after oxygen–glucose deprivation/24 hrs recovery. Cell viability, nitric oxide production and intracellular calcium ([ca2+]i) levels were evaluated by MTT assay, the modified Griess method and Fura-2 respectively. 25 and 100...
متن کاملThe Effect of Noscapine on Oxygen-Glucose Deprivation on Primary Murine Cortical Neurons in High Glucose Condition
AbstractIn the present work we set out to investigate the neuroprotective effects of noscapine (0.5-2 µM) in presence of D-glucose on primary murine foetal cortical neurons after oxygen–glucose deprivation/24 hrs recovery. Cell viability, nitric oxide production and intracellular calcium ([ca2+]i) levels were evaluated by MTT assay, the modified Griess method and Fura-2 respectively. 25 and 100...
متن کاملSignalling mechanisms mediating Zn2+-induced TRPM2 channel activation and cell death in microglial cells
Excessive Zn2+ causes brain damage via promoting ROS generation. Here we investigated the role of ROS-sensitive TRPM2 channel in H2O2/Zn2+-induced Ca2+ signalling and cell death in microglial cells. H2O2/Zn2+ induced concentration-dependent increases in cytosolic Ca2+ concentration ([Ca2+]c), which was inhibited by PJ34, a PARP inhibitor, and abolished by TRPM2 knockout (TRPM2-KO). Pathological...
متن کاملP146: Gamma Aminobutyric Acid (GABA) and its Alterations in Stress
Gamma aminobutyrate (GABA) is a non-protein amino acid that is thought to play an important role in the modulation of the central response to stress. Mechanisms by which GABA may facilitate these responses to stress are metabolic and/or mechanical disruptions. Environmental stresses increase GABA accumulation through cytosolic acidification, induce an acidic pH-dependent activation of glutamate...
متن کامل