A d.c. magnetic metamaterial.

نویسندگان

  • F Magnus
  • B Wood
  • J Moore
  • K Morrison
  • G Perkins
  • J Fyson
  • M C K Wiltshire
  • D Caplin
  • L F Cohen
  • J B Pendry
چکیده

Electromagnetic metamaterials are a class of materials that have been artificially structured on a subwavelength scale. They are currently the focus of a great deal of interest because they allow access to previously unrealizable properties such as a negative refractive index. Most metamaterial designs have so far been based on resonant elements, such as split rings, and research has concentrated on microwave frequencies and above. Here, we present the first experimental realization of a non-resonant metamaterial designed to operate at zero frequency. Our samples are based on a recently proposed template for an anisotropic magnetic metamaterial consisting of an array of superconducting plates. Magnetometry experiments show a strong, adjustable diamagnetic response when a field is applied perpendicular to the plates. We have calculated the corresponding effective permeability, which agrees well with theoretical predictions. Applications for this metamaterial may include non-intrusive screening of weak d.c. magnetic fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXPERIMENTAL AND THEORETICAL STUDY OF THE STRUCTURAL, MAGNETIC AND ELECTRONIC PROPERTIES OF THE BA2GDSBO6 PEROVSKITE

In this work the procedure to the synthesis of Ba2GdSbO6 complex perovskite by the solid-state reaction method is reported. Theoretically a study of the crystalline and electronic structure was performed into the framework of the Density Functional Theory (DFT). The most stable structure is obtained to be a rhombohedral perovskite with a lattice constant a=6,0840 Å.  Due the occurren...

متن کامل

Three-dimensional magnetic cloak working from d.c. to 250 kHz

Invisible cloaking is one of the major outcomes of the metamaterial research, but the practical potential, in particular for high frequencies (for example, microwave to visible light), is fatally challenged by the complex material properties they usually demand. On the other hand, it will be advantageous and also technologically instrumental to design cloaking devices for applications at low fr...

متن کامل

Reconfiguring photonic metamaterials with currents and magnetic fields

We demonstrate that spatial arrangement and optical properties of metamaterial nanostructures can be controlled dynamically using currents and magnetic fields. Mechanical deformation of metamaterial arrays is driven by both resistive heating of bimorph nanostructures and the Lorentz force that acts on charges moving in a magnetic field. With electrically controlled transmission changes of up to...

متن کامل

Magnetically Tunable Ferrite-Dielectric Left-Handed Metamaterial

In this paper, a magnetically tunable metamaterial is proposed and studied. The metamaterial is based on the combination of ferrite sheets and dielectric rods. The tunable property is originated from the ferromagnetic resonance and electric response of dielectric rods. The retrieved electromagnetic parameters and transmission characteristic showed that by simultaneously inspiring the ferromagne...

متن کامل

Nonlinear Metamaterial and Plasmonic Structures

Theory of nonlinear metamaterials [1] predicted that the hysteresis-type dependence of magnetic permeability on the field intensity may allow dramatic changes of the material properties. As the first step towards creating tunable nonlinear metamaterials we studied dynamic tunability of the magnetic resonance of a single nonlinear split-ring resonator [2] and revealed different tuning regimes of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 7 4  شماره 

صفحات  -

تاریخ انتشار 2008