Spatial distribution of forest aboveground biomass estimated from remote sensing and forest inventory data in New England, USA
نویسندگان
چکیده
We combined satellite (Landsat 7 and Moderate Resolution Imaging Spectrometer) and U.S. Department of Agriculture forest inventory and analysis (FIA) data to estimate forest aboveground biomass (AGB) across New England, USA. This is practical for large-scale carbon studies and may reduce uncertainty of AGB estimates. We estimate that total regional forest AGB was 1,867 teragram (10, dry weight) in 2001, with a mean AGB density of 120 Mg/ha (Standard deviation = 54 Mg/ha) ranging from 15 to 240 Mg/ha within a 95% percentile. The majority of regional AGB density was in the range of 80 to 160 Mg/ha (58.2%). High AGB densities were observed along the Appalachian Mountains from northwestern Connecticut to the Green Mountains in Vermont and White Mountains in New Hampshire, while low AGB densities were concentrated in the Downeast area of Maine (ME) and the Cape Cod area of Massachusetts (MA). At the state level, the averaged difference in mean AGB densities between simulated and FIA (as reference) was -2.0% ranging from 0% to -4.2% with a standard error of 3.2%. Within the 95% confidence interval the differences between FIA and simulated AGB densities ranged from 0 to 6% (absolute value). Our study may provide useful information for regional fuel-loading estimates.
منابع مشابه
Comparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests
Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...
متن کاملImpacts of Spatial Variability on Aboveground Biomass Estimation from L-Band Radar in a Temperate Forest
Estimation of forest aboveground biomass (AGB) has become one of the main challenges of remote sensing science for global observation of carbon storage and changes in the past few decades. We examine the impact of plot size at different spatial resolutions, incidence angles, and polarizations on the forest biomass estimation using L-band polarimetric Synthetic Aperture Radar data acquired by NA...
متن کاملEvaluating the Remote Sensing and Inventory-Based Estimation of Biomass in the Western Carpathians
Understanding the potential of forest ecosystems as global carbon sinks requires a thorough knowledge of forest carbon dynamics, including both sequestration and fluxes among multiple pools. The accurate quantification of biomass is important to better understand forest productivity and carbon cycling dynamics. Stand-based inventories (SBIs) are widely used for quantifying forest characteristic...
متن کاملMapping Forest Ecosystem Biomass Density for Xiangjiang River Basin by Combining Plot and Remote Sensing Data and Comparing Spatial Extrapolation Methods
The distribution of forest biomass in a river basin usually has obvious spatial heterogeneity in relation to the locations of the upper and lower reaches of the basin. In the subtropical region of China, a large amount of forest biomass, comprising diverse forest types, plays an important role in maintaining the balance of the regional carbon cycle. However, accurately estimating forest ecosyst...
متن کاملPotential of Landsat-8 spectral indices to estimate forest biomass
Forest ecosystems are among the largest terrestrial carbon reservoirs on our planet earth thus playing a vital role in global carbon cycle. Presently, remote sensing techniques provide proper estimates of forest biomass and quantify carbon stocks. The present study has explored Landsat-8 sensor product and evaluated its application in biomass mapping and estimation. The specific objectives were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008