The Alzheimer's disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal cultures.

نویسندگان

  • A R White
  • G Multhaup
  • F Maher
  • S Bellingham
  • J Camakaris
  • H Zheng
  • A I Bush
  • K Beyreuther
  • C L Masters
  • R Cappai
چکیده

The amyloid precursor protein (APP) of Alzheimer's disease can reduce copper (II) to copper (I) in a cell-free system potentially leading to increased oxidative stress in neurons. We used neuronal cultures derived from APP knock-out (APP(-/-)) and wild-type (WT) mice to examine the role of APP in copper neurotoxicity. WT cortical, cerebellar, and hippocampal neurons were significantly more susceptible than their respective APP(-/-) neurons to toxicity induced by physiological concentrations of copper but not by zinc or iron. There was no difference in copper toxicity between APLP2(-/-) and WT neurons, demonstrating specificity for APP-associated copper toxicity. Copper uptake was the same in WT and APP(-/-) neurons, suggesting APP may interact with copper to induce a localized increase in oxidative stress through copper (I) production. This was supported by significantly higher levels of copper-induced lipid peroxidation in WT neurons. Treatment of neuronal cultures with a peptide corresponding to the human APP copper-binding domain (APP142-166) potentiated copper but not iron or zinc toxicity. Incubation of APP142-166 with low-density lipoprotein (LDL) and copper resulted in significantly increased lipid peroxidation compared to copper and LDL alone. Substitution of the copper coordinating histidine residues with asparagines (APP142-166(H147N, H149N, H151N)) abrogated the toxic effects. A peptide corresponding to the zinc-binding domain (APP181-208) failed to induce copper or zinc toxicity in neuronal cultures. These data support a role for the APP copper-binding domain in APP-mediated copper (I) generation and toxicity in primary neurons, a process that has important implications for Alzheimer's disease and other neurodegenerative disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P135: The Role of Amyloid Beta-Peptides and Tau Protein in Alzheimer\'s Disease

Alzheimer's desease is the most common age-related neurodegenerative disorder, and cognitive problems such as defects in learning and memory are of its symptoms.  Among the factors involved in the pathogenesis of the disease are biochemical disorders in protein production, oxidative stress, decreased acetylcholine secretion and inflammation of the brain tissue. Extra-neuronal accumulation ...

متن کامل

Protective effect of the xanthate, D609, on Alzheimer's amyloid beta-peptide (1-42)-induced oxidative stress in primary neuronal cells.

Tricyclodecan-9-yl-xanthogenate (D609) is an inhibitor of phosphatidylcholine-specific phospholipase C, and this agent also has been reported to protect rodents against oxidative damage induced by ionizing radiation. Previously, we showed that D609 mimics glutathione (GSH) functions and that a disulfide is formed upon oxidation of D609 and the resulting dixanthate is a substrate for GSH reducta...

متن کامل

Survival of cultured neurons from amyloid precursor protein knock-out mice against Alzheimer's amyloid-beta toxicity and oxidative stress.

Studies on the amyloid precursor protein (APP) have suggested that it may be neuroprotective against amyloid-beta (Abeta) toxicity and oxidative stress. However, these findings have been obtained from either transfection of cell lines and mice that overexpress human APP isoforms or pretreatment of APP-expressing primary neurons with exogenous soluble APP. The neuroprotective role of endogenousl...

متن کامل

Neurotrophic and Neuroprotective Actions of (−)- and (+)-Phenserine, Candidate Drugs for Alzheimer’s Disease

Neuronal dysfunction and demise together with a reduction in neurogenesis are cardinal features of Alzheimer's disease (AD) induced by a combination of oxidative stress, toxic amyloid-β peptide (Aβ) and a loss of trophic factor support. Amelioration of these was assessed with the Aβ lowering AD experimental drugs (+)-phenserine and (-)-phenserine in neuronal cultures, and actions in mice were e...

متن کامل

Screening seven Iranian medicinal plants for protective effects against β-Amyloid-induced cytotoxicity in cultured cerebellar granule neurons

Background and objectives: Alzheimer's disease (AD) as a neurodegenerative disorder is the most common form of dementia in the elderly. According to the amyloid hypothesis, accumulation of amyloid beta (Aβ) plaques, which are mostly constituted of Aβ peptide aggregates, triggers pathological cascades that lead to neuronal cell death. Thus, modulation of Aβ toxicity is the hopef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 21  شماره 

صفحات  -

تاریخ انتشار 1999