Secure emergency medical architecture on the cloud using wireless sensor networks for emergency detection
نویسندگان
چکیده
Recently introduced, Attribute-based encryption (ABE) is a promising cryptographic method proposed by Sahai and Waters. This technique provides means for designing scalable and fine-grained access control. In ABE, data are encrypted with an access structure which is the logical expression of the access policy (eg: the data can be accessed by physician in cardiology division or by nurses). The cyphertext (encrypted data) can be decrypted by any user if his secret key has attributes that satisfy the access policy. The power of ABE is that we do not need to rely on the storage server for avoiding unauthorized data access since the access policy is embedded in the cyphertext itself. This makes ABE good solution to provide a fine-grained access control for medical applications, where data is outsourced on untrusted servers like the case of the Cloud. However, for emergency management, integrating ABE creates particular challenges for providing temporary access victims medical data when this is needed. In this paper we present our architecture for secure emergency management in healthcare area. We address the challenge of ABE integrating for providing temporary access victims medical data in emergency situation. In addition, we use wireless sensor network (WSN) technology to provide early emergency detection.
منابع مشابه
A Secure Routing Algorithm for Underwater Wireless Sensor Networks
Recently, underwater Wireless Sensor Networks (UWSNs) attracted the interest of many researchers and the past three decades have held the rapid progress of underwater acoustic communication. One of the major problems in UWSNs is how to transfer data from the mobile node to the base stations and choosing the optimized route for data transmission. Secure routing in UWSNs is necessary for packet d...
متن کاملHealing on the cloud: Secure cloud architecture for medical wireless sensor networks
There has been a host of research works on wireless sensor networks (WSN) for medical applications. However, the major shortcoming of these efforts is a lack of consideration of data management. Indeed, the huge amount of high sensitive data generated and collected by medical sensor networks introduces several challenges that existing architectures cannot solve. These challenges include scalabi...
متن کاملUnauthenticated event detection in wireless sensor networks using sensors co-coverage
Wireless Sensor Networks (WSNs) offer inherent packet redundancy since each point within the network area is covered by more than one sensor node. This phenomenon, which is known as sensors co-coverage, is used in this paper to detect unauthenticated events. Unauthenticated event broadcasting in a WSN imposes network congestion, worsens the packet loss rate, and increases the network energy con...
متن کاملAn Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach
Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...
متن کاملIntrusion Detection in Wireless Sensor Networks using Genetic Algorithm
Wireless sensor networks, due to the characteristics of sensors such as wireless communication channels, the lack of infrastructure and targeted threats, are very vulnerable to the various attacks. Routing attacks on the networks, where a malicious node from sending data to the base station is perceived. In this article, a method that can be used to transfer the data securely to prevent attacks...
متن کامل