Single- and Multi-Date Crop Identification Using PROBA-V 100 and 300 m S1 Products on Zlatia Test Site, Bulgaria

نویسندگان

  • Eugenia Roumenina
  • Clement Atzberger
  • Vassil Vassilev
  • Petar Dimitrov
  • Ilina Kamenova
  • Martin Banov
  • Lachezar Filchev
  • Georgi Jelev
چکیده

The monitoring of crops is of vital importance for food and environmental security in a global and European context. The main goal of this study was to assess the crop mapping performance provided by the 100 m spatial resolution of PROBA-V compared to coarser resolution data (e.g., PROBA-V at 300 m) for a 2250 km test site in Bulgaria. The focus was on winter and summer crop mapping with three to five classes. For classification, singleand multi-date spectral data were used as well as NDVI time series. Our results demonstrate that crop identification using 100 m PROBA-V data performed significantly better in all experiments compared to the PROBA-V 300 m data. PROBA-V multispectral imagery, acquired in spring (March) was the most appropriate for winter crop identification, while satellite data acquired in summer (July) was superior for summer crop identification. The classification accuracy from PROBA-V 100 m compared to PROBA-V 300 m was improved by 5.8% to 14.8% depending on crop type. Stacked multi-date satellite images with three to four images gave overall classification accuracies of 74%–77% (PROBA-V 100 m data) and 66%–70% (PROBA-V 300 m data) with four OPEN ACCESS Remote Sens. 2015, 7 13844 classes (wheat, rapeseed, maize, and sunflower). This demonstrates that three to four image acquisitions, well distributed over the growing season, capture most of the spectral and temporal variability in our test site. Regarding the PROBA-V NDVI time series, useful results were only obtained if crops were grouped into two broader crop type classes (summer and winter crops). Mapping accuracies decreased significantly when mapping more classes. Again, a positive impact of the increased spatial resolution was noted. Together, the findings demonstrate the positive effect of the 100 m resolution PROBA-V data compared to the 300 m for crop mapping. This has important implications for future data provision and strengthens the arguments for a second generation of this mission originally designed solely as a “gap-filler mission”.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping Winter Wheat Biomass and Yield Using Time Series Data Blended from PROBA-V 100- and 300-m S1 Products

Monitoring crop areas and yields is crucial for food security and agriculture management across the world. In this paper, we mapped the biomass and yield of winter wheat using the new Project for On-Board Autonomy-Vegetation (PROBA-V) products in the North China Plain (NCP). First, the daily 100-m land surface reflectance was generated by fusing the PROBA-V 100-m and 300-m S1 products. Our resu...

متن کامل

Crop Mapping Using PROBA-V Time Series Data at the Yucheng and Hongxing Farm in China

PROBA-V is a new global vegetation monitoring satellite launched in the second quarter of 2013 that provides data with a 100 m to 1 km spatial resolution and a daily to 10-day temporal resolution in the visible and near infrared (VNIR) bands. A major mission of the PROBA-V satellite is global agriculture monitoring, in which the accuracy of crop mapping plays a key role. In countries such as Ch...

متن کامل

Cropland Mapping over Sahelian and Sudanian Agrosystems: A Knowledge-Based Approach Using PROBA-V Time Series at 100-m

Early warning systems for food security require accurate and up-to-date information on the location of major crops in order to prevent hazards. A recent systematic analysis of existing cropland maps identified priority areas for cropland mapping and highlighted a major need for the Sahelian and Sudanian agrosystems. This paper proposes a knowledge-based approach to map cropland in the Sahelian ...

متن کامل

Spatial dynamics for relative contribution of cropping pattern analysis on environment by integrating remote sensing and GIS

Agriculture resources reflected to be one of the most imperative renewable and dynamic natural resources. Agricultural sustainability has the premier priority in all countries, whether developed or developing. Cropping system analysis is indispensable for grinding the sustainability of agricultural science. Crop alternation is stated as growing one crop after another on the same piece of la...

متن کامل

Radiative Transfer Model Inversion Based on Multi-temporal Chris/proba Data for Lai Estimation

Leaf area index (LAI) is a key variable for the understanding and modelling of several ecophysiological processes within a vegetation canopy. The LAI could thus provide vital information for the management of the environment and agricultural practices when estimated continuously over time and space thanks to remote sensing sensors such as CHRIS/PROBA. The spaceborne ESA-mission CHRIS/PROBA prov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015