ZnO Spintronics and Nanowire Devices
نویسندگان
چکیده
ZnO is a very promising material for spintronics applications, with many groups reporting room-temperature ferromagnetism in films doped with transition metals during growth or by ion implantation. In films doped with Mn during pulsed laser deposition (PLD), we find an inverse correlation between magnetization and electron density as controlled by Sn-doping. The saturation magnetization and coercivity of the implanted single-phase films were both strong functions of the initial anneal temperature, suggesting that carrier concentration alone cannot account for the magnetic properties of ZnO:Mn and factors such as crystalline quality and residual defects play a role. Plausible mechanisms for ferromagnetism include the bound magnetic polaron model or exchange that is mediated by carriers in a spin-split impurity band derived from extended donor orbitals. The progress in ZnO nanowires is also reviewed. The large surface area of nanorods makes them attractive for gas and chemical sensing, and the ability to control their nucleation sites makes them candidates for microlasers or memory arrays. Single ZnO nanowire depletion-mode metal-oxide semiconductor field effect transistors exhibit good saturation behavior, threshold voltage of ;"3 V, and a maximum transconductance of 0.3 mS/mm. Under ultraviolet (UV) illumination, the drain-source current increased by approximately a factor of 5 and the maximum transconductance was ;5 mS/mm. The channel mobility is estimated to be ;3 cm/V _ ss, comparable to that for thin film ZnO enhancement mode metal-oxide semiconductor field effect transistors (MOSFETs), and the on/off ratio was ;25 in the dark and ;125 under UV illumination. The Pt Schottky diodes exhibit excellent ideality factors of 1.1 at 25°C, very low reverse currents, and a strong photoresponse, with only a minor component with long decay times thought to originate from surface states. In the temperature range from 25°C to 150°C, the resistivity of nanorods treated in H2 at 400°C prior to measurement showed an activation energy of 0.089 eV and was insensitive to the ambient used. By contrast, the conductivity of nanorods not treated in H2 was sensitive to trace concentrations of gases in the measurement ambient even at room temperature, demonstrating their potential as gas sensors. Sensitive pH sensors using single ZnO nanowires have also been fabricated.
منابع مشابه
Preparation and Properties of Co-Doped ZnO Nanowires
Spintronics aims at developing a new generation of electronic materials for consumer products based on electron spin rather than on electron charge. Its main objective is the fabrication of new devices based on semiconductor materials with magnetic behavior (so called diluted magnetic semiconductors). These devices combine the manipulation of electrons as classically known in semiconductor devi...
متن کاملFirst-Principles Study of Magnetic Properties of 3dTransition Metals Doped in ZnO Nanowires
The defect formation energies of transition metals (Cr, Fe, and Ni) doped in the pseudo-H passivated ZnO nanowires and bulk are systematically investigated using first-principles methods. The general chemical trends of the nanowires are similar to those of the bulk. We also show that the formation energy increases as the diameter of the nanowire decreases, indicating that the doping of magnetic...
متن کاملThe impact of nanocontact on nanowire based nanoelectronics.
Nanowire-based nanoelectronic devices will be innovative electronic building blocks from bottom up. The reduced nanocontact area of nanowire devices magnifies the contribution of contact electrical properties. Although a lot of two-contact-based ZnO nanoelectronics have been demonstrated, the electrical properties bringing either from the nanocontacts or from the nanowires have not been conside...
متن کاملInvestigating Output Voltage and Mechanical Stability of a Piezoelectric Nanogenerator Based on ZnO Nanowire
The output of a piezoelectric nanogenerator based on ZnO nanowire is largely affected by the shape of nanowire. In order to obtain mechanically stable nanogenerator with high performance, the investigation of mechanical and electrical characteristics related to the nanowires and materials used in nanogenerators are of great interest and significance. This paper presents the various behavior of ...
متن کاملAngle-dependent photodegradation over ZnO nanowire arrays on flexible paper substrates
In this study, we grew zinc oxide (ZnO) nanowire arrays on paper substrates using a two-step growth strategy. In the first step, we formed single-crystalline ZnO nanoparticles of uniform size distribution (ca. 4 nm) as seeds for the hydrothermal growth of the ZnO nanowire arrays. After spin-coating of these seeds onto paper, we grew ZnO nanowire arrays conformally on these substrates. The cryst...
متن کامل