Approximation of the vibration modes of a plate by Reissner-Mindlin equations

نویسندگان

  • Ricardo G. Durán
  • Luis Hervella-Nieto
  • Elsa Liberman
  • Rodolfo Rodríguez
  • Jorge E. Solomin
چکیده

This paper deals with the approximation of the vibration modes of a plate modelled by the Reissner-Mindlin equations. It is well known that, in order to avoid locking, some kind of reduced integration or mixed interpolation has to be used when solving these equations by finite element methods. In particular, one of the most widely used procedures is the mixed interpolation tensorial components, based on the family of elements called MITC. We use the lowest order method of this family. Applying a general approximation theory for spectral problems, we obtain optimal order error estimates for the eigenvectors and the eigenvalues. Under mild assumptions, these estimates are valid with constants independent of the plate thickness. The optimal double order for the eigenvalues is derived from a corresponding L2-estimate for a load problem which is proven here. This optimal order L2-estimate is of interest in itself. Finally, we present several numerical examples showing the very good behavior of the numerical procedure even in some cases not covered by our theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Differential Quadrature Method for Vibration Analysis of Cantilever Trapezoidal FG Thick Plate

This paper presents a numerical solution for vibration analysis of a cantilever trapezoidal thick plate. The material of the plate is considered to be graded through the thickness from a metal surface to a ceramic one according to a power law function. Kinetic and strain energies are derived based on the Reissner-Mindlin theory for thick plates and using Hamilton's principle, the governing equa...

متن کامل

Approximation of the Buckling Problem for Reissner-Mindlin Plates

This paper deals with the approximation of the buckling coefficients and modes of a clamped plate modeled by the Reissner-Mindlin equations. These coefficients are related with the eigenvalues of a non-compact operator. We give a spectral characterization of this operator and show that the relevant buckling coefficients correspond to isolated nondefective eigenvalues. Then we consider the numer...

متن کامل

Numerical analysis of a finite element method to compute the vibration modes of a Reissner-Mindlin laminated plate

This paper deals with the finite element approximation of the vibration modes of a laminated plate modeled by the Reissner-Mindlin equations; DL3 elements are used for the bending terms and standard piecewise linear continuous elements for the in-plane displacements. An a priori estimate of the regularity of the solution, independent of the plate thickness, is proved for the corresponding load ...

متن کامل

Vibration of a Reissner-Mindlin-Timoshenko plate-beam system

In this paper, we consider a plate–beam system inwhich the Reissner–Mindlin platemodel is combined with the Timoshenko beam model. Natural frequencies and vibration modes for the system are calculated using the finite element method. The interface conditions at the contact between the plate and beams are discussed in some detail. The impact of regularity on the enforcement of certain interface ...

متن کامل

Vibration and Buckling of Double-Graphene Sheet-Systems with an Attached Nanoparticle Based on Classical and Mindlin Plate Theories Considering Surface Effects

Vibration of double-graphene sheet-system is considered in this study. Graphene sheets are coupled by Pasternak elastic medium. Classic and Mindlin plate theories are utilized for modeling the coupled system. Upper sheet carries a moving mass. Governing equations are derived using energy method and Hamilton’s principle considering surface stress effects and nonlocal parameter.  Using Galerkin m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 68  شماره 

صفحات  -

تاریخ انتشار 1999