Improving posterior marginal approximations in latent Gaussian models

نویسندگان

  • Botond Cseke
  • Tom Heskes
چکیده

We consider the problem of correcting the posterior marginal approximations computed by expectation propagation and Laplace approximation in latent Gaussian models and propose correction methods that are similar in spirit to the Laplace approximation of Tierney and Kadane (1986). We show that in the case of sparse Gaussian models, the computational complexity of expectation propagation can be made comparable to that of the Laplace approximation by using a parallel updating scheme. In some cases, expectation propagation gives excellent estimates, where the Laplace approximation fails. Inspired by bounds on the marginal corrections, we arrive at factorized approximations, which can be applied on top of both expectation propagation and Laplace. These give nearly indistinguishable results from the non-factorized approximations in a fraction of the time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous credible bands for latent Gaussian models

Deterministic Bayesian inference for latent Gaussian models has recently become available using integrated nested Laplace approximations (INLA). Applying the INLAmethodology, marginal estimates for elements of the latent field can be computed efficiently, providing relevant summary statistics like posterior means, variances and pointwise credible intervals. In this paper, we extend the use of I...

متن کامل

Approximate Marginals in Latent Gaussian Models

We consider the problem of improving the Gaussian approximate posterior marginals computed by expectation propagation and the Laplace method in latent Gaussian models and propose methods that are similar in spirit to the Laplace approximation of Tierney and Kadane (1986). We show that in the case of sparse Gaussian models, the computational complexity of expectation propagation can be made comp...

متن کامل

Spatial Latent Gaussian Models: Application to House Prices Data in Tehran City

Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...

متن کامل

Bayesian Leave-One-Out Cross-Validation Approximations for Gaussian Latent Variable Models

The future predictive performance of a Bayesian model can be estimated using Bayesian cross-validation. In this article, we consider Gaussian latent variable models where the integration over the latent values is approximated using the Laplace method or expectation propagation (EP). We study the properties of several Bayesian leave-one-out (LOO) crossvalidation approximations that in most cases...

متن کامل

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Approximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations

We are concerned with Bayesian inference for latent Gaussian models, that is models involving a Gaussian latent field (in a broad sense), controlled by few parameters. This is perhaps the class of models most commonly encountered in applications: the latent Gaussian field can represent, for instance, a mix of smoothing splines or smooth curves, temporal and spatial processes. Hence, popular smo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010