Improving Shortest Paths in the Delaunay Triangulation
نویسندگان
چکیده
We study a problem about shortest paths in Delaunay triangulations. Given two nodes s, t in the Delaunay triangulation of a point set P , we look for a new point p that can be added, such that the shortest path from s to t, in the Delaunay triangulation of P ∪ {p}, improves as much as possible. We study several properties of the problem, and give efficient algorithms to find such point when the graph-distance used is Euclidean and for the link-distance. Several other variations of the problem are also discussed.
منابع مشابه
On the stabbing number of a random Delaunay triangulation
We consider a Delaunay triangulation defined on n points distributed independently and uniformly on a planar compact convex set of positive volume. Let the stabbing number be the maximal number of intersections between a line and edges of the triangulation. We show that the stabbing number Sn is Θ( √ n) in the mean, and provide tail bounds for P{Sn ≥ t √ n}. Applications to planar point locatio...
متن کاملModeling wildfire propagation with Delaunay triangulation and shortest path algorithms
In this paper, a methodology for modeling surface wildfire propagation through a complex landscape is presented. The methodology utilizes a Delaunay triangulation to represent surface fire spread within the landscape. A procedure to construct the graph and estimate the rate of spread along the edges of a network is discussed. After the Delaunay data structure is constructed, a two pass shortest...
متن کاملThe Stretch Factor of the Delaunay Triangulation Is Less than 1.998
Let S be a finite set of points in the Euclidean plane. Let D be a Delaunay triangulation of S. The stretch factor (also known as dilation or spanning ratio) of D is the maximum ratio, among all points p and q in S, of the shortest path distance from p to q in D over the Euclidean distance ||pq||. Proving a tight bound on the stretch factor of the Delaunay triangulation has been a long standing...
متن کاملSchool of IT Technical Report ELLIPSE AND ARC ROUTING ALGORITHMS FOR DELAUNAY TRIANGULATIONS
Oblivious online routing (OOR) algorithms are suitable when applications only have local information available to make routing decisions. This paper presents two new OOR algorithms for Delaunay triangulations: the Ellipse Routing algorithm and the Arc Routing algorithm. Both of their names come from the shapes of their searching areas for the next-hop neighbor. This paper also evaluates and com...
متن کاملDistributed Construction of Planar Spanner and Routing for Ad Hoc Wireless Networks
Several localized routing protocols [1] guarantee the delivery of the packets when the underlying network topology is the Delaunay triangulation of all wireless nodes. However, it is expensive to construct the Delaunay triangulation in a distributed manner. Given a set of wireless nodes, we often model the network as a unit-disk graphUDG . In this paper, we present a novel localized networking ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Comput. Geometry Appl.
دوره 22 شماره
صفحات -
تاریخ انتشار 2012