Crossing the c=1 Barrier in 2d Lorentzian Quantum Gravity
نویسندگان
چکیده
In an extension of earlier work we investigate the behaviour of two-dimensional Lorentzian quantum gravity under coupling to a conformal field theory with c > 1. This is done by analyzing numerically a system of eight Ising models (corresponding to c = 4) coupled to dynamically triangulated Lorentzian geometries. It is known that a single Ising model couples weakly to Lorentzian quantum gravity, in the sense that the Hausdorff dimension of the ensemble of two-geometries is two (as in pure Lorentzian quantum gravity) and the matter behaviour is governed by the Onsager exponents. By increasing the amount of matter to 8 Ising models, we find that the geometry of the combined system has undergone a phase transition. The new phase is characterized by an anomalous scaling of spatial length relative to proper time at large distances, and as a consequence the Hausdorff dimension is now three. In spite of this qualitative change in the geometric sector, and a very strong interaction between matter and geometry, the critical exponents of the Ising model retain their Onsager values. This provides evidence for the conjecture that the KPZ values of the critical exponents in 2d Euclidean quantum gravity are entirely due to the presence of baby universes. Lastly, we summarize the lessons learned so far from 2d Lorentzian quantum gravity. ∗Email: [email protected] †Email: [email protected] ‡Email: [email protected]
منابع مشابه
On the relation between Euclidean and Lorentzian 2D quantum gravity
Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a (generalized) Lorentzian spacetime. This motivates a map between the parameter spaces of the two theo...
متن کاملar X iv : h ep - l at / 0 30 60 33 v 1 2 5 Ju n 20 03 Fermions in 2 D Lorentzian Quantum Gravity
We implement Wilson fermions on 2D Lorentzian triangulation and determine the spectrum of the Dirac-Wilson operator. We compare it to the spectrum of the corresponding operator in the Euclidean background. We use fermionic particle to probe the fractal properties of Lorentzian gravity coupled to c = 1/2 and c = 4 matter. We numerically determine the scaling exponent of the mass gap M ∼ N −1/dH ...
متن کاملEuclidean and Lorentzian Quantum Gravity – Lessons from Two Dimensions
No theory of four-dimensional quantum gravity exists as yet. In this situation the two-dimensional theory, which can be analyzed by conventional field-theoretical methods, can serve as a toy model for studying some aspects of quantum gravity. It represents one of the rare settings in a quantum-gravitational context where one can calculate quantities truly independent of any background geometry....
متن کاملMaking the gravitational path integral more Lorentzian or Life beyond Liouville gravity
In two space-time dimensions, there is a theory of Lorentzian quantum gravity which can be defined by a rigorous, non-perturbative path integral and is inequivalent to the well-known theory of (Euclidean) quantum Liouville gravity. It has a number of appealing features: i) its quantum geometry is non-fractal, ii) it remains consistent when coupled to matter, even beyond the c=1 barrier, iii) it...
متن کاملA New Perspective on Matter Coupling in 2d Quantum Gravity
We provide compelling evidence that a previously introduced model of non-perturbative 2d Lorentzian quantum gravity exhibits (two-dimensional) flat-space behaviour when coupled to Ising spins. The evidence comes from both a high-temperature expansion and from Monte Carlo simulations of the combined gravity-matter system. This weak-coupling behaviour lends further support to the conclusion that ...
متن کامل