Guidance for RNA-seq co-expression network construction and analysis: safety in numbers
نویسندگان
چکیده
MOTIVATION RNA-seq co-expression analysis is in its infancy and reasonable practices remain poorly defined. We assessed a variety of RNA-seq expression data to determine factors affecting functional connectivity and topology in co-expression networks. RESULTS We examine RNA-seq co-expression data generated from 1970 RNA-seq samples using a Guilt-By-Association framework, in which genes are assessed for the tendency of co-expression to reflect shared function. Minimal experimental criteria to obtain performance on par with microarrays were >20 samples with read depth >10 M per sample. While the aggregate network constructed shows good performance (area under the receiver operator characteristic curve ∼0.71), the dependency on number of experiments used is nearly identical to that present in microarrays, suggesting thousands of samples are required to obtain 'gold-standard' co-expression. We find a major topological difference between RNA-seq and microarray co-expression in the form of low overlaps between hub-like genes from each network due to changes in the correlation of expression noise within each technology. CONTACT [email protected] or [email protected] SUPPLEMENTARY INFORMATION Networks are available at: http://gillislab.labsites.cshl.edu/supplements/rna-seq-networks/ and supplementary data are available at Bioinformatics online.
منابع مشابه
I-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing
Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...
متن کاملCanonical correlation analysis for RNA-seq co-expression networks
Digital transcriptome analysis by next-generation sequencing discovers substantial mRNA variants. Variation in gene expression underlies many biological processes and holds a key to unravelling mechanism of common diseases. However, the current methods for construction of co-expression networks using overall gene expression are originally designed for microarray expression data, and they overlo...
متن کاملRegulatory effects of cis- and trans-LncRNAs on differential expression of genes following infection with viral hemorrhagic septicemia virus in rainbow trout (Oncorhynchus mykiss)
In this study the cis and trans regulatory effect of long non-coding genes (lncRNA) on the expression of genes in fish infected by Viral hemorrhagic septicemia virus (VHS) was investigated using RNA-seq technology. At the end of experimental period (the thirty fifth day), total RNA was extracted from spleen tissue (group treated with virus) and physiological serum (control group) was used to pr...
متن کاملRNA-Seq Bayesian Network Exploration of Immune System in Bovine
Background: The stress is one of main factors effects on production system. Several factors (both genetic and environmental elements) regulate immune response to stress. Objectives: In order to determine the major immune system regulatory genes underlying stress responses, a learning Bayesian network approach for those regulatory genes was applied to RNA-...
متن کاملIdentification of soybean circular RNAs in response to low nitrogen and phosphorus stress
Soybean, one of the most important sources of edible oil and protein in the world, is exposed to various environmental biotic and abiotic stresses. These stresses can negatively impact the quality and quantity of soybean production. This study aimed to identify genes that express circular RNAs in response to low phosphorus and nitrogen stresses in soybean roots. Soybean seeds were grown under d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 31 13 شماره
صفحات -
تاریخ انتشار 2015