Poly-APX- and PTAS-Completeness in Standard and Differential Approximation

نویسندگان

  • Cristina Bazgan
  • Bruno Escoffier
  • Vangelis Th. Paschos
چکیده

We first prove the existence of natural Poly-APX-complete problems, for both standard and differential approximation paradigms, under already defined and studied suitable approximation preserving reductions. Next, we devise new approximation preserving reductions, called FT and DFT, respectively, and prove that, under these reductions, natural problems are PTAS-complete, always for both standard and differential approximation paradigms. To our knowledge, no natural problem was known to be PTAS-complete and no problem was known to be Poly-APX-complete until now. We also deal with the existence of intermediate problems under FTand DFT-reductions and we show that such problems exist provided that there exist NPO-intermediate problems under Turing-reduction. Finally, we show that min coloring is APX-complete for the differential approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Completeness in standard and differential approximation classes: Poly-(D)APX- and (D)PTAS-completeness

Several problems are known to be APX-, DAPX-, PTAS-, or Poly-APX-PB-complete under suitably defined approximation-preserving reductions. But, to our knowledge, no natural problem is known to be PTAS-complete and no problem at all is known to be Poly-APX-complete. On the other hand, DPTASand Poly-DAPX-completeness have not been studied until now. We first prove in this paper the existence of nat...

متن کامل

Completeness in Differential Approximation Classes

We study completeness in differential approximability classes. In differential approximation, the quality of an approximation algorithm is the measure of both how far is the solution computed from a worst one and how close is it to an optimal one. The main classes considered are DAPX, the differential counterpart of APX, including the NP optimization problems approximable in polynomial time wit...

متن کامل

PTAS-completeness in standard and differential approximation (Preliminary version)

Nous nous plaçons dans le cadre de l’approximation polynomiale des problèmes d’optimisation. Les réductions préservant l’approximabilité ont permis de structurer les classes d’approximation classiques (APX, PTAS,...) en introduisant des notions de complétude. Par exemple, des problèmes naturels ont été montrés APXou DAPX-complets (pour le paradigme de l’approximation différentielle), sous des r...

متن کامل

Laboratoire d’Analyse et Modélisation de Systèmes pour l’Aide à la Décision UMR CNRS 7024

This article focuses on polynomial approximation of optimization problems. The classical approximation classes (APX, PTAS,. . . ) have been structured by the introduction of approximation-preserving reductions and notions of completeness. For instance, natural problems are known to be APXor DAPX-complete (under the ∗ LAMSADE, Université Paris-Dauphine, 75775 Paris cedex 16, France. {bazgan,esco...

متن کامل

Aproximation Properties of Planning Benchmarks

For many classical planning domains, the computational complexity of non-optimal and optimal planning is known. However, little is known about the area in between the two extremes of finding some plan and finding optimal plans. In this contribution, we provide a complete classification of the propositional domains from the first four International Planning Competitions with respect to the appro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004