Gating of myotonic Na channel mutants defines the response to mexiletine and a potent derivative.
نویسندگان
چکیده
BACKGROUND Myotonia and periodic paralysis caused by sodium channel mutations show variable responses to the anti-myotonic drug mexiletine. OBJECTIVE To investigate whether variability among sodium channel mutants results from differences in drug binding affinity or in channel gating. METHODS Whole-cell sodium currents (I(Na)) were recorded in tsA201 cells expressing human wild-type (WT) and mutant skeletal muscle sodium channels (A1156T, hyperkalemic periodic paralysis; R1448C, paramyotonia congenita; G1306E, potassium-aggravated myotonia). RESULTS At a holding potential (hp) of -120 mV, mexiletine produced a tonic (TB, 0.33 Hz) and a use-dependent (UDB, 10 Hz) block of peak I(Na) with a potency following the order rank R1448C > WT approximately equal A1156T > G1306E. Yet, when assayed from an hp of -180 mV, TB and UDB by mexiletine were similar for the four channels. The different midpoints of channel availability curves found for the four channels track the half-maximum inhibitory value (IC50) measured at -120 mV. Thus differences in the partitioning of channels between the closed and fast-inactivated states underlie the different IC50 measured at a given potential. The mexiletine-derivative, Me7 (alpha-[(2-methylphenoxy)methyl]-benzenemethanamine), behaved similarly but was approximately 5 times more potent than mexiletine. Interestingly, the higher drug concentrations ameliorated the abnormally slower decay rate of myotonic I(Na). CONCLUSIONS These results explain the basis of the apparent difference in block of mutant sodium channels by mexiletine and Me7, opening the way to a more rationale drug use and to design more potent drugs able to correct specifically the biophysical defect of the mutation in individual myotonic patients.
منابع مشابه
Calixmexitil: Calixarene-based Cluster of Mexiletine with Amplified Anti-myotonic Activity as A Novel Use-dependent Sodium Channel Blocker
Mexiletine as the first choice drug in myotonia treatment is a chiral sodium channel blocker clinically used in its racemic form. The phenolic structure of this drug, prompted us to design its novel calix[4]arene-based cluster in a chalice-shaped structure. Therefore, the present study reports the synthesis and in-vitro anti-myotonic activity of the chalice-shaped cluster of mexiletine...
متن کاملCalixmexitil: Calixarene-based Cluster of Mexiletine with Amplified Anti-myotonic Activity as A Novel Use-dependent Sodium Channel Blocker
Mexiletine as the first choice drug in myotonia treatment is a chiral sodium channel blocker clinically used in its racemic form. The phenolic structure of this drug, prompted us to design its novel calix[4]arene-based cluster in a chalice-shaped structure. Therefore, the present study reports the synthesis and in-vitro anti-myotonic activity of the chalice-shaped cluster of mexiletine...
متن کاملUnexpected mexiletine responses of a mutant cardiac Na+ channel implicate the selectivity filter as a structural determinant of antiarrhythmic drug access.
Gating properties of Na(+) channels are the critical determinants for the state-dependent block by class I antiarrhythmic drugs; however, recent site-directed mutagenesis studies have shown that the Na(+) channel selectivity filter region controls drug access to and dissociation from the binding site. To validate these observations, we have exploited a naturally occurring cardiac Na(+) channel ...
متن کاملToward precision medicine in myotonic syndromes
The large number of physiological processes regulated by voltage-gated sodium channels (Na v) and their role in many diseases make these channels highly interesting as targets for new drugs. Current research in the pharmaceutical industry mainly focuses on identifying sodium channel blockers that may have therapeutic application in widespread pathological conditions, including epilepsy, cardiac...
متن کاملNew classification and treatment for myotonic disorders.
Myotonia is repetitive firing of muscle action potentials causing prolonged muscle contractions even after mechanical stimulations to the muscles have ceased. Most common myotonic disorder is myotonic dystrophy which is now termed DM1, myotonic dystrophy type 1. In Japan, proximal myotonic myopathy, which is now called DM2 has not been reported. Both DM1 and DM2 have Cl channel abnormality whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurology
دوره 57 10 شماره
صفحات -
تاریخ انتشار 2001