Ablation of the oncogenic transcription factor ERG by deubiquitinase inhibition in prostate cancer.

نویسندگان

  • Shan Wang
  • Rahul K Kollipara
  • Nishi Srivastava
  • Rui Li
  • Preethi Ravindranathan
  • Elizabeth Hernandez
  • Eva Freeman
  • Caroline G Humphries
  • Payal Kapur
  • Yair Lotan
  • Ladan Fazli
  • Martin E Gleave
  • Stephen R Plymate
  • Ganesh V Raj
  • Jer-Tsong Hsieh
  • Ralf Kittler
چکیده

The transcription factor E-twenty-six related gene (ERG), which is overexpressed through gene fusion with the androgen-responsive gene transmembrane protease, serine 2 (TMPRSS2) in ∼40% of prostate tumors, is a key driver of prostate carcinogenesis. Ablation of ERG would disrupt a key oncogenic transcriptional circuit and could be a promising therapeutic strategy for prostate cancer treatment. Here, we show that ubiquitin-specific peptidase 9, X-linked (USP9X), a deubiquitinase enzyme, binds ERG in VCaP prostate cancer cells expressing TMPRSS2-ERG and deubiquitinates ERG in vitro. USP9X knockdown resulted in increased levels of ubiquitinated ERG and was coupled with depletion of ERG. Treatment with the USP9X inhibitor WP1130 resulted in ERG degradation both in vivo and in vitro, impaired the expression of genes enriched in ERG and prostate cancer relevant gene signatures in microarray analyses, and inhibited growth of ERG-positive tumors in three mouse xenograft models. Thus, we identified USP9X as a potential therapeutic target in prostate cancer cells and established WP1130 as a lead compound for the development of ERG-depleting drugs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor and Stem Cell Biology ERG Is a Critical Regulator of Wnt/LEF1 Signaling in Prostate Cancer

Chromosomal translocations juxtaposing the androgen-responsive TMPRSS2 promoter with the ETSfamily transcription factor ERG result in aberrant ERG upregulation in approximately 50% of prostate cancers. Studies to date have shown important roles of ERG in inducing oncogenic properties of prostate cancer. Its molecular mechanisms of action, however, are yet to be fully understood. Here, we report...

متن کامل

SPOP mutation drives prostate neoplasia without stabilizing oncogenic transcription factor ERG

Nearly 50% of prostate cancers harbor gene fusions that lead to overexpression of the transcription factor ERG, while a mutually exclusive 10% of prostate cancers harbor recurrent mutations in the gene encoding the E3 ubiquitin ligase SPOP. Recent reports suggest that SPOP acts as a ubiquitin ligase for ERG and propose that ERG stabilization is the oncogenic effector of SPOP mutation. Here, we ...

متن کامل

The ubiquitin ligase TRIM25 targets ERG for degradation in prostate cancer

Ets related gene (ERG) is a transcription factor that is overexpressed in 40% of prostate tumors due to a gene fusion between ERG and TMPRSS2. Because ERG functions as a driver of prostate carcinogenesis, understanding the mechanisms that influence its turnover may provide new molecular handles to target the protein. Previously, we found that ERG undergoes ubiquitination and then is deubiquitin...

متن کامل

ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer.

Chromosomal translocations juxtaposing the androgen-responsive TMPRSS2 promoter with the ETS-family transcription factor ERG result in aberrant ERG upregulation in approximately 50% of prostate cancers. Studies to date have shown important roles of ERG in inducing oncogenic properties of prostate cancer. Its molecular mechanisms of action, however, are yet to be fully understood. Here, we repor...

متن کامل

TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming.

Translocations fusing the strong androgen-responsive gene, TMPRSS2, with ERG or other oncogenic ETS factors may facilitate prostate cancer development. Here, we studied 18 advanced prostate cancers for ETS factor alterations, using reverse transcription-PCR and DNA and RNA array technologies, and identified putative ERG downstream gene targets from the microarray data of 410 prostate samples. O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 11  شماره 

صفحات  -

تاریخ انتشار 2014