Filtrations on the Knot Contact Homology of Transverse Knots

نویسندگان

  • TOBIAS EKHOLM
  • JOHN ETNYRE
چکیده

We construct a new invariant of transverse links in the standard contact structure on R3. This invariant is a doubly filtered version of the knot contact homology differential graded algebra (DGA) of the link, see [4], [13]. Here the knot contact homology of a link in R3 is the Legendrian contact homology DGA of its conormal lift into the unit cotangent bundle S∗R3 of R3, and the filtrations are constructed by counting intersections of the holomorphic disks of the DGA differential with two conormal lifts of the contact structure. We also present a combinatorial formula for the filtered DGA in terms of braid representatives of transverse links and apply it to show that the new invariant is independent of previously known invariants of transverse links.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Knot Contact Homology and Transverse Knots

We give a combinatorial treatment of transverse homology, a new invariant of transverse knots that is an extension of knot contact homology. The theory comes in several flavors, including one that is an invariant of topological knots and produces a three-variable knot polynomial related to the A-polynomial. We provide a number of computations of transverse homology that demonstrate its effectiv...

متن کامل

A Note on the Knot Floer Homology of Fibered Knots

We prove that the knot Floer homology of a fibered knot is nontrivial in its nextto-top Alexander grading. Immediate applications include new proofs of Krcatovich’s result that knots with L-space surgeries are prime and Hedden and Watson’s result that the rank of knot Floer homology detects the trefoil among knots in the 3-sphere. We also generalize the latter result, proving a similar theorem ...

متن کامل

Transverse Knots Distinguished by Knot Floer Homology

We exhibit pairs of transverse knots with the same self-linking number that are not transversely isotopic, using the recently defined knot Floer homology invariant for transverse knots and some algebraic refinements.

متن کامل

Classification of Legendrian Knots and Links

The aim of this paper is to use computer program to generate and classify Legendrian knots and links. Modifying the algorithm in [11], we write a program in Java to generate all grid diagrams of up to size 10. Since classification of Legendrian links up to Legendrian isotopy is equivalent to grid diagrams modulo a set of Cromwell moves including translation, commutation and X:NE,X:SW (de)stabil...

متن کامل

ar X iv : 0 90 1 . 03 80 v 2 [ m at h . SG ] 6 J ul 2 00 9 RATIONAL LINKING AND CONTACT GEOMETRY

In the note we study Legendrian and transverse knots in rationally null-homologous knot types. In particular we generalize the standard definitions of self-linking number, ThurstonBennequin invariant and rotation number. We then prove a version of Bennequin’s inequality for these knots and classify precisely when the Bennequin bound is sharp for fibered knot types. Finally we study rational unk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012