IGFBP2 expression predicts IDH-mutant glioma patient survival
نویسندگان
چکیده
Mutations of the isocitrate dehydrogenase (IDH) 1 and 2 genes occur in ~80% of lower-grade (WHO grade II and grade III) gliomas. Mutant IDH produces (R)-2-hydroxyglutarate, which induces DNA hypermethylation and presumably drives tumorigenesis. Interestingly, IDH mutations are associated with improved survival in glioma patients, but the underlying mechanism for the difference in survival remains unclear. Through comparative analyses of 286 cases of IDH-wildtype and IDH-mutant lower-grade glioma from a TCGA data set, we report that IDH-mutant gliomas have increased expression of tumor-suppressor genes (NF1, PTEN, and PIK3R1) and decreased expression of oncogenes(AKT2, ARAF, ERBB2, FGFR3, and PDGFRB) and glioma progression genes (FOXM1, IGFBP2, and WWTR1) compared with IDH-wildtype gliomas. Furthermore, each of these genes is prognostic in overall gliomas; however, within the IDH-mutant group, none remains prognostic except IGFBP2 (encodinginsulin-like growth factor binding protein 2). Through validation in an independent cohort, we show that patients with low IGFBP2 expressiondisplay a clear advantage in overall and disease-free survival, whereas those with high IGFBP2 expressionhave worse median survival than IDH-wildtype patients. These observations hold true across different histological and molecular subtypes of lower-grade glioma. We propose therefore that an unexpected biological consequence of IDH mutations in glioma is to ameliorate patient survival by promoting tumor-suppressor signaling while inhibiting that of oncogenes, particularly IGFBP2.
منابع مشابه
Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes.
The development of targeted treatment strategies adapted to individual patients requires identification of the different tumor classes according to their biology and prognosis. We focus here on the molecular aspects underlying these differences, in terms of sets of genes that control pathogenesis of the different subtypes of astrocytic glioma. By performing cDNA-array analysis of 53 patient bio...
متن کاملInsulin-like growth factor binding protein 2 expression and prognosis of glioma patients: a systematic review and meta-analysis
Many studies have focused on the prognosis role of insulin-like growth factor binding protein 2 (IGFBP2) in glioma patients, but the results remain inconsistent. Thus, a meta-analysis was carried out to explore the relationship between IGFBP2 and glioma prognosis. Relevant publications were searched in several widely used databases and six articles (seven studies, 766 patients in all) were incl...
متن کاملSomatostatin receptor 2A in gliomas: Association with oligodendrogliomas and favourable outcome
Somatostatin receptor subtype 2A (SSTR2A) is a potential therapeutic target in gliomas. Data on SSTR2A expression in different glioma entities, however, is particularly conflicting. Our objective was to characterize SSTR2A status and explore its impact on survival in gliomas classified according to the specific molecular signatures of the updated WHO classification. In total, 184 glioma samples...
متن کاملHuman Cancer Biology IDHMutation and Neuroglial Developmental Features Define Clinically Distinct Subclasses of Lower Grade Diffuse Astrocytic Glioma
Purpose:Diffuse gliomas represent the most prevalent class of primary brain tumor. Despite significant recent advances in the understanding of glioblastoma [World Health Organization (WHO) IV], its most malignant subtype, lower grade (WHO II and III) glioma variants remain comparatively understudied, especially in light of their notable clinical heterogeneity. Accordingly, we sought to identify...
متن کاملLactate dehydrogenase A silencing in IDH mutant gliomas.
BACKGROUND Mutations of the isocitrate dehydrogenase 1 and 2 gene (IDH1/2) were initially thought to enhance cancer cell survival and proliferation by promoting the Warburg effect. However, recent experimental data have shown that production of 2-hydroxyglutarate by IDH mutant cells promotes hypoxia-inducible factor (HIF)1α degradation and, by doing so, may have unexpected metabolic effects. ...
متن کامل