Therapeutic efficacy for hepatocellular carcinoma by boric acid-mediated boron neutron capture therapy in a rat model.
نویسندگان
چکیده
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignant tumor with poor prognosis. Boron neutron capture therapy (BNCT) may provide an alternative therapy for HCC. This study investigated the therapeutic efficacy of boric acid (BA)-mediated BNCT for HCC in a rat model. MATERIALS AND METHODS The pharmacokinetic and biodistribution of BA in N1S1 tumor-bearing rats were analyzed. Rats were injected with 25 mg B/kg body weight via tail veins before neutron irradiation at the Tsing Hua Open-pool Reactor, and the efficacy of BNCT was evaluated from the tumor size, tumor blood flow, and biochemical analyses. RESULTS HCC-bearing rats administered BNCT showed reductions in tumor size on ultrasound imaging, as well as an obvious reduction in the distribution of tumor blood flow. The lesion located in livers had disappeared on the 80th day after BNCT; a recovery of values to normal levels was also recorded. CONCLUSION BA-mediated BNCT is a promising alternative for liver cancer therapy since the present study demonstrated the feasibility of curing a liver tumor and restoring liver function in rats. Efforts are underway to investigate the histopathological features and the detailed mechanisms of BA-mediated BNCT.
منابع مشابه
Boric acid enhances in vivo Ehrlich ascites carcinoma cell proliferation in Swiss albino mice.
The influence of boric acid, a boron carrier, on Ehrlich ascites carcinoma (EAC) cell-bearing mice was investigated in view of its importance in the boron neutron capture therapy and the influence of boron on proliferation and progression of cancer cells mediated by proteoglycans and collagen. The present study included the evaluation of boric acid for the effects on total count and viability o...
متن کاملRadiobiological response of U251MG, CHO-K1 and V79 cell lines to accelerator-based boron neutron capture therapy.
In the current article, we provide in vitro efficacy evaluation of a unique accelerator-based neutron source, constructed at the Budker Institute of Nuclear Physics (Novosibirsk, Russian Federation), for boron neutron capture therapy (BNCT), which is particularly effective in the case of invasive cancers. U251MG, CHO-K1 and V79 cells were incubated and irradiated in various concentrations of bo...
متن کاملDesign and Simulation of Photoneutron Source by MCNPX Monte Carlo Code for Boron Neutron Capture Therapy
Introduction Electron linear accelerator (LINAC) can be used for neutron production in Boron Neutron Capture Therapy (BNCT). BNCT is an external radiotherapeutic method for the treatment of some cancers. In this study, Varian 2300 C/D LINAC was simulated as an electron accelerator-based photoneutron source to provide a suitable neutron flux for BNCT. Materials and Methods Photoneutron sources w...
متن کاملPreparation and characterization of 10B boric acid with high purity for nuclear industry
Boric acid is often added into coolant as neutron capture agent for pressurized water reactor, whose amount is influenced by its abundance and purity. Therefore, the preparation of enriched (10)B boric acid with high purity is beneficial to nuclear industry. (10)B is also used in developing tumor-specific boronated drugs in boron neutron capture therapy. The boronated drug can be administered t...
متن کاملInvestigation the potential of Boron neutron capture therapy (BNCT) to treat the lung cancer
Introduction: Boron neutron capture therapy (BNCT) is recommended to treat the glioblastoma tumor. It is well known that neuron beams are more effective treatment than photon beams to treat hypoxia tumors due to interaction of neutron with nucleus and production of heavy particles such as 7Li and alpha particle. In this study to evaluate the suitability of BNCT for treating of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anticancer research
دوره 33 11 شماره
صفحات -
تاریخ انتشار 2013