Search algorithm, and simulation of elastodynamic crack propagation by modified smoothed particle hydrodynamics (MSPH) method
نویسندگان
چکیده
We first present a nonuniform box search algorithm with length of each side of the square box dependent on the local smoothing length, and show that it can save up to 70% CPU time as compared to the uniform box search algorithm. This is especially relevant for transient problems in which, if we enlarge the sides of boxes, we can apply the search algorithm fewer times during the solution process, and improve the computational efficiency of a numerical scheme. We illustrate the application of the search algorithm and themodified smoothed particle hydrodynamics (MSPH) method by studying the propagation of cracks in elastostatic and elastodynamic problems. The dynamic stress intensity factor computed with the MSPH method either from the stress field near the crack tip or from the J-integral agrees very well with that computed by using the finite element method. Three problems are analyzed. One of these involves a plate with a centrally located crack, and the other with three cracks on plates’s horizontal centroidal axis. In each case the plate edges parallel to the crack are loaded in a direction perpendicular to the crack surface. It is found that, at low strain rates, the presence of other cracks will delay the propagation of the central crack. However, at high strain rates, the speed of propagation of the central crack is unaffected by the presence of the other two cracks. In the third problem dealing with the simulation of crack propagation in a functionally graded plate, the crack speed is found to be close to the experimental one. R. C. Batra · G. M. Zhang (B) Department of Engineering Science and Mechanics, M/C 0219, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA e-mail: [email protected]
منابع مشابه
Modified Smoothed Particle Hydrodynamics (MSPH) basis functions for meshless methods, and their application to axisymmetric Taylor impact test
The Modified Smoothed Particle Hydrodynamics (MSPH) method proposed earlier by the authors and applied to the analysis of transient two-dimensional (2-D) heat conduction, 1-D transient simple shearing deformations of a thermoviscoplastic material, 1-D wave propagation in a functionally graded plate, and 2-D elastodynamic crack propagation is extended to the analysis of axisymmetric deformations...
متن کاملA MODIFIED COMPRESSIBLE SMOOTHED PARTICLE HYDRODYNAMICS (MCSPH) METHOD AND ITS APPLICATION ON THE NUMERICAL SIMULATION OF LOW AND HIGH VELOCITY IMPACTS
In this study a Modified Compressible Smoothed Particle Hydrodynamics (MCSPH) method is introduced which is applicable in problems involve shock wave structures and elastic-plastic deformations of solids. As a matter of fact, algorithm of the method is based on an approach which descritizes the momentum equation into three parts and solves each part separately and calculates their effects on th...
متن کاملSimulation of Gravity Wave Propagation in Free Surface Flows by an Incompressible SPH Algorithm
This paper presents an incompressible smoothed particle hydrodynamics (SPH) model to simulate wave propagation in a free surface flow. The Navier-Stokes equations are solved in a Lagrangian framework using a three-step fractional method. In the first step, a temporary velocity field is provided according to the relevant body forces. This velocity field is renewed in the second step to include t...
متن کاملWave propagation in functionally graded materials by modified smoothed particle hydrodynamics (MSPH) method
We use the modified smoothed particle hydrodynamics (MSPH) method to study the propagation of elastic waves in functionally graded materials. An artificial viscosity is added to the hydrostatic pressure to control oscillations in the shock wave. Computed results agree well with the analytical solution of the problem. It is shown that, for the same placement of particles/nodes the MSPH method gi...
متن کاملModified smoothed particle hydrodynamics (MSPH) for the analysis of centrifugally assisted TiC-Fe-Al2O3 combustion synthesis
A modified smoothed particle hydrodynamic (MSPH) computational technique was utilized to simulate molten particle motion and infiltration speed on multi-scale analysis levels. The radial velocity and velocity gradient of molten alumina, iron infiltration in the TiC product and solidification rate, were predicted during centrifugal self-propagating high-temperature synthesis (SHS) simulation, wh...
متن کامل